A2 -Net里的double attention block 怎么用pytorch实现
时间: 2024-02-11 10:09:56 浏览: 324
Double Attention Block是一种用于图像分类、目标检测等任务中的注意力机制,可以增强模型的表达能力。在PyTorch中,可以通过如下代码实现Double Attention Block:
```python
import torch
import torch.nn as nn
class DoubleAttentionBlock(nn.Module):
def __init__(self, in_channels, reduction_ratio=16):
super(DoubleAttentionBlock, self).__init__()
self.in_channels = in_channels
self.reduction_ratio = reduction_ratio
self.conv1 = nn.Conv2d(in_channels, in_channels // 2, kernel_size=1)
self.conv2 = nn.Conv2d(in_channels, in_channels // 2, kernel_size=1)
self.conv3 = nn.Conv2d(in_channels, in_channels // 2, kernel_size=1)
self.conv4 = nn.Conv2d(in_channels, in_channels // 2, kernel_size=1)
self.bn1 = nn.BatchNorm2d(in_channels // 2)
self.bn2 = nn.BatchNorm2d(in_channels // 2)
self.bn3 = nn.BatchNorm2d(in_channels // 2)
self.bn4 = nn.BatchNorm2d(in_channels // 2)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x):
# Channel Attention
avg_pool = torch.mean(x, dim=(-2,-1), keepdim=True)
max_pool, _ = torch.max(x, dim=(-2,-1), keepdim=True)
ca1 = self.conv1(avg_pool)
ca2 = self.conv2(max_pool)
ca = torch.cat([ca1, ca2], dim=1)
ca = self.bn1(ca)
ca = self.softmax(ca)
x = x * ca
# Spatial Attention
sa1 = self.conv3(x)
sa1 = self.bn2(sa1)
sa2 = self.conv4(x.transpose(-2,-1))
sa2 = self.bn3(sa2)
sa2 = sa2.transpose(-2,-1)
sa = sa1 + sa2
sa = self.softmax(sa)
x = x * sa
return x
```
在上述代码中,`in_channels`表示输入张量的通道数,`reduction_ratio`表示通道注意力机制中的缩放比例。在`__init__`函数中,我们首先定义了四个卷积层和四个批归一化层,分别用于计算通道注意力机制中的平均值、最大值以及空间注意力机制。在`forward`函数中,我们首先计算通道注意力机制的权重,并将其应用于输入张量。然后,我们计算空间注意力机制的权重,并将其应用于经过通道注意力机制处理后的张量。最后,我们返回处理后的张量。
需要注意的是,这里的`x`张量的维度应该为`[batch_size, in_channels, height, width]`。如果您的输入张量不符合这个要求,您需要先进行相应的调整。
阅读全文