用python实现一个纹理增强的算法
时间: 2023-05-26 18:05:15 浏览: 305
新项目基于图割算法的图像纹理合成python实现源码+设计报告+详细注释.zip
纹理增强(Texture Enhancement)可以使图像的纹理更加突出、清晰,使其更容易识别。下面是一种基于Python的简单纹理增强算法:
1. 导入必要的库和模块
```python
import cv2
import numpy as np
```
2. 读取原始图像并将其转换为灰度图像
```python
img = cv2.imread("original.jpg")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
```
3. 计算灰度图像的梯度
```python
sobelx = cv2.Sobel(gray,cv2.CV_64F,1,0)
sobely = cv2.Sobel(gray,cv2.CV_64F,0,1)
```
4. 计算图像的梯度幅值和梯度方向
```python
magnitude = np.sqrt(sobelx**2 + sobely**2)
orientation = np.arctan2(sobely, sobelx)
```
5. 对梯度方向进行量化,将其划分为8个方向
```python
bins = np.int32(orientation*(8/np.pi))
```
6. 对图像中的每个像素点进行处理
```python
cell_size = 8
block_size = 2
nbins = 8
height, width = gray.shape
h_cells = int(height / cell_size)
w_cells = int(width / cell_size)
hist_tensor = np.zeros((h_cells, w_cells, nbins))
for i in range(h_cells):
for j in range(w_cells):
# 计算每个cell的直方图
cell_magnitude = magnitude[i*cell_size:(i+1)*cell_size,
j*cell_size:(j+1)*cell_size]
cell_orientation = bins[i*cell_size:(i+1)*cell_size,
j*cell_size:(j+1)*cell_size]
hist, _ = np.histogram(cell_orientation.ravel(),
bins=nbins,
range=(0, nbins),
weights=cell_magnitude.ravel())
hist_tensor[i, j, :] = hist
for i in range(h_cells-block_size+1):
for j in range(w_cells-block_size+1):
# 计算每个block的直方图
block_hist = hist_tensor[i:i+block_size, j:j+block_size, :].flatten()
# 对block的直方图进行归一化
eps = 1e-7
block_hist[block_hist < eps] = eps
block_hist = block_hist / np.sum(block_hist)
# 将归一化后的直方图转换成一维向量,与原图像进行加权相加
img[i*cell_size:i*cell_size+block_size*cell_size, j*cell_size:j*cell_size+block_size*cell_size] *= block_hist[:, np.newaxis]
```
7. 显示纹理增强后的图像
```python
cv2.imshow("enhanced", img)
cv2.waitKey()
```
这里使用了HOG(Histogram of Oriented Gradients)方法对图像进行处理,通过计算图像中每个像素点周围的梯度方向,可以获取图像的纹理特征,并对这些特征进行加权处理,达到纹理增强的效果。
阅读全文