使用传统交叉熵损失函数的Unet分割算法代码
时间: 2023-10-21 09:07:00 浏览: 104
以下是使用传统交叉熵损失函数的Unet分割算法的代码示例:
```
import tensorflow as tf
from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, Concatenate
from tensorflow.keras import Input, Model
from tensorflow.keras.losses import SparseCategoricalCrossentropy
def unet(input_shape):
inputs = Input(shape=input_shape)
# Contracting path
c1 = Conv2D(64, 3, activation='relu', padding='same')(inputs)
c2 = Conv2D(64, 3, activation='relu', padding='same')(c1)
p1 = MaxPooling2D()(c2)
c3 = Conv2D(128, 3, activation='relu', padding='same')(p1)
c4 = Conv2D(128, 3, activation='relu', padding='same')(c3)
p2 = MaxPooling2D()(c4)
c5 = Conv2D(256, 3, activation='relu', padding='same')(p2)
c6 = Conv2D(256, 3, activation='relu', padding='same')(c5)
p3 = MaxPooling2D()(c6)
c7 = Conv2D(512, 3, activation='relu', padding='same')(p3)
c8 = Conv2D(512, 3, activation='relu', padding='same')(c7)
# Expansive path
u1 = UpSampling2D()(c8)
c9 = Conv2D(256, 3, activation='relu', padding='same')(u1)
c10 = Conv2D(256, 3, activation='relu', padding='same')(Concatenate()([c6, c9]))
u2 = UpSampling2D()(c10)
c11 = Conv2D(128, 3, activation='relu', padding='same')(u2)
c12 = Conv2D(128, 3, activation='relu', padding='same')(Concatenate()([c4, c11]))
u3 = UpSampling2D()(c12)
c13 = Conv2D(64, 3, activation='relu', padding='same')(u3)
c14 = Conv2D(64, 3, activation='relu', padding='same')(Concatenate()([c2, c13]))
# Output layer
outputs = Conv2D(1, 1, activation='sigmoid')(c14)
model = Model(inputs=inputs, outputs=outputs)
model.compile(optimizer='adam', loss=SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])
return model
```
在这个例子中,我们使用了TensorFlow 2.x构建了一个基本的Unet模型,其中包含了多个卷积和池化层的收缩路径,以及多个上采样和卷积层的扩张路径。模型的输出是一个2D的分割图像,通过使用sigmoid激活函数对像素进行二元分类(前景和背景)。此外,我们使用了传统的交叉熵损失函数,以及准确率作为评估指标。
阅读全文