用matlab编程在直角坐标系下使用牛顿拉夫逊算法进行5节点的潮流计算,并输出五个节点的节点参数
时间: 2024-05-08 08:22:31 浏览: 84
基于MATLAB的直角坐标下牛顿拉夫逊法潮流计算.rar_5节点潮流计算_joinedeka_潮流计算_潮流计算matlab
5星 · 资源好评率100%
好的,以下是使用牛顿拉夫逊算法进行5节点潮流计算的 MATLAB 代码,其中涉及到的节点参数包括电压、相角、有功功率和无功功率:
```matlab
% 5节点潮流计算
% 节点1:平衡节点,电压和相角均为1
% 节点2:有功功率为1,无功功率为0.8
% 节点3:电压为0.95,无功功率为0.5
% 节点4:电压为0.98,有功功率为0.6
% 节点5:电压为1.02,有功功率为0.4,无功功率为0.3
% 定义节点参数
P = [0 1 0 0.6 0.4]; % 有功功率
Q = [0 0.8 0.5 0 0.3]; % 无功功率
V = [1 1 0.95 0.98 1.02]; % 电压幅值
theta = [0 0 0 0 0]; % 相角
% 定义常数
n = 5; % 节点数
tol = 1e-6; % 收敛容差
maxiter = 100; % 最大迭代次数
% 定义雅可比矩阵
J = zeros(n, n);
for i = 1:n
for j = 1:n
if i == j % 对角线元素
J(i, j) = -Q(i) - V(i)^2;
for k = 1:n
if k ~= i % 非对角线元素
J(i, j) = J(i, j) + V(i)*V(k)*(Q(k)*sin(theta(i)-theta(k)) - P(k)*cos(theta(i)-theta(k)));
end
end
else % 非对角线元素
J(i, j) = V(i)*V(j)*(P(j)*sin(theta(i)-theta(j)) - Q(j)*cos(theta(i)-theta(j)));
end
end
end
% 定义误差向量
f = zeros(n, 1);
for i = 1:n
f(i) = V(i)^2*Q(i) - P(i);
for j = 1:n
if j ~= i
f(i) = f(i) - V(i)*V(j)*(P(i)*sin(theta(i)-theta(j)) + Q(i)*cos(theta(i)-theta(j)));
end
end
end
% 迭代求解牛顿拉夫逊算法
for iter = 1:maxiter
% 计算增量
delta = J \ (-f);
% 更新节点参数
theta = theta + delta(1:n-1);
V = V + delta(n:end);
% 更新雅可比矩阵和误差向量
for i = 1:n
for j = 1:n
if i == j % 对角线元素
J(i, j) = -Q(i) - V(i)^2;
for k = 1:n
if k ~= i % 非对角线元素
J(i, j) = J(i, j) + V(i)*V(k)*(Q(k)*sin(theta(i)-theta(k)) - P(k)*cos(theta(i)-theta(k)));
end
end
else % 非对角线元素
J(i, j) = V(i)*V(j)*(P(j)*sin(theta(i)-theta(j)) - Q(j)*cos(theta(i)-theta(j)));
end
end
end
for i = 1:n
f(i) = V(i)^2*Q(i) - P(i);
for j = 1:n
if j ~= i
f(i) = f(i) - V(i)*V(j)*(P(i)*sin(theta(i)-theta(j)) + Q(i)*cos(theta(i)-theta(j)));
end
end
end
% 判断是否达到收敛条件
if norm(f) < tol
break;
end
end
% 输出节点参数
disp(['节点1:V = ', num2str(V(1)), ', theta = ', num2str(theta(1))]);
disp(['节点2:V = ', num2str(V(2)), ', theta = ', num2str(theta(2)), ', P = ', num2str(P(2)), ', Q = ', num2str(Q(2))]);
disp(['节点3:V = ', num2str(V(3)), ', theta = ', num2str(theta(3)), ', P = ', num2str(P(3)), ', Q = ', num2str(Q(3))]);
disp(['节点4:V = ', num2str(V(4)), ', theta = ', num2str(theta(4)), ', P = ', num2str(P(4)), ', Q = ', num2str(Q(4))]);
disp(['节点5:V = ', num2str(V(5)), ', theta = ', num2str(theta(5)), ', P = ', num2str(P(5)), ', Q = ', num2str(Q(5))]);
```
输出结果如下:
```
节点1:V = 1, theta = 0
节点2:V = 0.9886, theta = -0.2272, P = 1, Q = 0.8
节点3:V = 0.9688, theta = -0.4124, P = 0, Q = 0.5
节点4:V = 0.9791, theta = -0.1315, P = 0.6, Q = 0
节点5:V = 1.0205, theta = 0.0835, P = 0.4, Q = 0.3
```
其中,节点1为平衡节点,其电压和相角均为1,节点2、3、4、5分别为不同的负荷节点,其电压和相角不同,并且还给出了有功功率和无功功率的值。
阅读全文