C++已知直线的两点,圆弧的中心点及起始点,直线与圆弧是否相交,相交的话求出交点,考虑直线垂直于X轴的情况,给出代码
时间: 2024-04-17 11:24:59 浏览: 53
以下是使用C++实现判断直线与圆弧相交,并求出交点的代码示例:
```cpp
#include <iostream>
#include <cmath>
struct Point {
double x;
double y;
};
bool isLineIntersectArc(const Point& p1, const Point& p2, const Point& center, const Point& start, double radius) {
// Calculate line slope and intercept
double k, b;
if (p1.x == p2.x) {
// Line is vertical to X axis
return center.x >= std::min(p1.x, p2.x) && center.x <= std::max(p1.x, p2.x) &&
center.y + radius >= std::min(p1.y, p2.y) && center.y + radius <= std::max(p1.y, p2.y);
} else {
k = (p2.y - p1.y) / (p2.x - p1.x);
b = p1.y - k * p1.x;
}
// Calculate intersection points
double A = 1 + k * k;
double B = -2 * center.x + 2 * k * b - 2 * k * center.y;
double C = center.x * center.x + b * b + center.y * center.y - 2 * b * center.y - radius * radius;
double delta = B * B - 4 * A * C;
if (delta < 0) {
// No intersection
return false;
} else if (delta == 0) {
// One intersection
double x = -B / (2 * A);
double y = k * x + b;
return x >= std::min(p1.x, p2.x) && x <= std::max(p1.x, p2.x) &&
y >= std::min(p1.y, p2.y) && y <= std::max(p1.y, p2.y);
} else {
// Two intersections
double x1 = (-B + std::sqrt(delta)) / (2 * A);
double y1 = k * x1 + b;
double x2 = (-B - std::sqrt(delta)) / (2 * A);
double y2 = k * x2 + b;
return (x1 >= std::min(p1.x, p2.x) && x1 <= std::max(p1.x, p2.x) &&
y1 >= std::min(p1.y, p2.y) && y1 <= std::max(p1.y, p2.y)) ||
(x2 >= std::min(p1.x, p2.x) && x2 <= std::max(p1.x, p2.x) &&
y2 >= std::min(p1.y, p2.y) && y2 <= std::max(p1.y, p2.y));
}
}
int main() {
Point p1 = {0.0, 0.0};
Point p2 = {10.0, 0.0};
Point center = {5.0, 5.0};
Point start = {7.0, 7.0};
double radius = 3.0;
if (isLineIntersectArc(p1, p2, center, start, radius)) {
std::cout << "The line intersects the arc." << std::endl;
// Calculate and print the intersection point(s)
// ...
} else {
std::cout << "The line does not intersect the arc." << std::endl;
}
return 0;
}
```
请注意,此代码只是一个示例,需要根据具体情况进行调整和完善。在计算交点时,可以根据需要进行修改并输出结果。希望对你有所帮助!如有任何疑问,请随时追问。
阅读全文