用java实现多目标算法代码加注释
时间: 2023-08-27 13:04:01 浏览: 86
以下是使用Java实现多目标遗传算法的代码,已经加上了注释,希望能够帮助你理解实现过程。
```java
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
public class MultiObjectiveGA {
// 定义目标向量,此处为2维
private static final int NUM_OBJECTIVES = 2;
// 定义种群大小
private static final int POPULATION_SIZE = 100;
// 定义交叉率
private static final double CROSSOVER_RATE = 0.8;
// 定义变异率
private static final double MUTATION_RATE = 0.01;
// 定义最大迭代次数
private static final int MAX_ITERATIONS = 100;
// 定义个体类
private static class Individual {
// 保存个体的解向量
private int[] solution;
// 保存个体的目标向量
private double[] objectives;
// 保存个体的适应度值
private double fitness;
// 构造函数,初始化解向量
public Individual(int[] solution) {
this.solution = solution;
this.objectives = new double[NUM_OBJECTIVES];
this.fitness = 0.0;
}
// 计算个体的目标向量
public void evaluate() {
// 计算目标函数1的值
objectives[0] = 0.0;
for (int i = 0; i < solution.length; i++) {
objectives[0] += Math.pow(solution[i], 2.0);
}
// 计算目标函数2的值
objectives[1] = 0.0;
for (int i = 0; i < solution.length; i++) {
objectives[1] += Math.pow(solution[i] - 2.0, 2.0);
}
}
// 获取个体的解向量
public int[] getSolution() {
return solution;
}
// 获取个体的目标向量
public double[] getObjectives() {
return objectives;
}
// 设置个体的适应度值
public void setFitness(double fitness) {
this.fitness = fitness;
}
// 获取个体的适应度值
public double getFitness() {
return fitness;
}
}
// 定义种群类
private static class Population {
// 保存种群所有个体
private List<Individual> individuals;
// 构造函数,初始化种群
public Population() {
this.individuals = new ArrayList<>();
for (int i = 0; i < POPULATION_SIZE; i++) {
int[] solution = new int[NUM_OBJECTIVES];
Random rand = new Random();
for (int j = 0; j < NUM_OBJECTIVES; j++) {
solution[j] = rand.nextInt(10);
}
Individual individual = new Individual(solution);
individuals.add(individual);
}
}
// 计算种群所有个体的目标向量和适应度值
public void evaluate() {
for (Individual individual : individuals) {
individual.evaluate();
}
// 计算参考解集
List<Individual> referenceSet = nonDominatedSort(individuals);
// 计算每个个体的适应度值
for (Individual individual : individuals) {
int dominatedCount = countDominated(individual, referenceSet);
individual.setFitness(dominatedCount + 1);
}
}
// 选择算子,采用多目标锦标赛选择
public Individual selection() {
Random rand = new Random();
Individual bestIndividual = null;
for (int i = 0; i < 2; i++) {
int index = rand.nextInt(individuals.size());
Individual individual = individuals.get(index);
if (bestIndividual == null || individual.getFitness() < bestIndividual.getFitness()) {
bestIndividual = individual;
}
}
return bestIndividual;
}
// 交叉算子,采用单点交叉
public void crossover(Individual parent1, Individual parent2) {
Random rand = new Random();
if (rand.nextDouble() < CROSSOVER_RATE) {
int index = rand.nextInt(NUM_OBJECTIVES);
for (int i = index; i < NUM_OBJECTIVES; i++) {
int temp = parent1.getSolution()[i];
parent1.getSolution()[i] = parent2.getSolution()[i];
parent2.getSolution()[i] = temp;
}
}
}
// 变异算子,采用随机变异
public void mutation(Individual individual) {
Random rand = new Random();
if (rand.nextDouble() < MUTATION_RATE) {
int index = rand.nextInt(NUM_OBJECTIVES);
individual.getSolution()[index] = rand.nextInt(10);
}
}
// 计算参考解集
private List<Individual> nonDominatedSort(List<Individual> individuals) {
List<Individual> referenceSet = new ArrayList<>();
List<List<Individual>> fronts = new ArrayList<>();
// 初始化第一层
fronts.add(new ArrayList<>());
for (Individual individual : individuals) {
individual.setFitness(0.0);
individual.setFitness(0.0);
individual.setFitness(0);
for (Individual other : individuals) {
if (individual == other) {
continue;
}
if (dominates(individual, other)) {
individual.getDominatedSet().add(other);
} else if (dominates(other, individual)) {
individual.setDominatedCount(individual.getDominatedCount() + 1);
}
}
if (individual.getDominatedCount() == 0) {
fronts.get(0).add(individual);
referenceSet.add(individual);
}
}
// 计算剩余层
int i = 0;
while (!fronts.get(i).isEmpty()) {
List<Individual> nextFront = new ArrayList<>();
for (Individual individual : fronts.get(i)) {
for (Individual dominatedIndividual : individual.getDominatedSet()) {
dominatedIndividual.setDominatedCount(dominatedIndividual.getDominatedCount() - 1);
if (dominatedIndividual.getDominatedCount() == 0) {
nextFront.add(dominatedIndividual);
referenceSet.add(dominatedIndividual);
}
}
}
fronts.add(nextFront);
i++;
}
return referenceSet;
}
// 判断个体1是否支配个体2
private boolean dominates(Individual individual1, Individual individual2) {
double[] objectives1 = individual1.getObjectives();
double[] objectives2 = individual2.getObjectives();
boolean dominates = true;
for (int i = 0; i < NUM_OBJECTIVES; i++) {
if (objectives1[i] > objectives2[i]) {
dominates = false;
break;
}
}
return dominates;
}
// 计算个体被多少个参考解支配
private int countDominated(Individual individual, List<Individual> referenceSet) {
int count = 0;
for (Individual referenceIndividual : referenceSet) {
if (dominates(referenceIndividual, individual)) {
count++;
}
}
return count;
}
}
public static void main(String[] args) {
// 初始化种群
Population population = new Population();
// 迭代计数器
int iteration = 0;
// 迭代
while (iteration < MAX_ITERATIONS) {
// 计算种群所有个体的目标向量和适应度值
population.evaluate();
// 输出当前代数和当前最优解
System.out.println("Iteration " + iteration + ": " + getBestIndividual(population).getObjectives()[0] + ", " + getBestIndividual(population).getObjectives()[1]);
// 生成下一代种群
Population offspringPopulation = new Population();
for (int i = 0; i < POPULATION_SIZE; i++) {
// 选择父代个体
Individual parent1 = population.selection();
Individual parent2 = population.selection();
// 交叉
offspringPopulation.crossover(parent1, parent2);
// 变异
offspringPopulation.mutation(parent1);
offspringPopulation.mutation(parent2);
}
// 更新种群
population = offspringPopulation;
// 更新迭代计数器
iteration++;
}
}
// 获取种群中最优的个体
private static Individual getBestIndividual(Population population) {
Individual bestIndividual = null;
for (Individual individual : population.individuals) {
if (bestIndividual == null || individual.getFitness() < bestIndividual.getFitness()) {
bestIndividual = individual;
}
}
return bestIndividual;
}
}
```
阅读全文