python使用光流估计算法获取摄像头的运动方向
时间: 2024-03-19 14:43:02 浏览: 140
基于光流场的运动估计
4星 · 用户满意度95%
使用python中的OpenCV库来获取摄像头的运动方向可以按照以下步骤进行:
1. 导入OpenCV库和numpy库:
```
import cv2
import numpy as np
```
2. 打开摄像头:
```
cap = cv2.VideoCapture(0)
```
3. 定义光流算法:
```
feature_params = dict(maxCorners=100, qualityLevel=0.3, minDistance=7, blockSize=7)
lk_params = dict(winSize=(15, 15), maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
```
4. 初始化变量:
```
old_frame = None
old_gray = None
p0 = None
mask = None
```
5. 进入循环并获取摄像头的每一帧图像:
```
while True:
ret, frame = cap.read()
if ret:
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
if old_frame is None:
old_frame = frame
old_gray = gray
p0 = cv2.goodFeaturesToTrack(old_gray, mask=None, **feature_params)
mask = np.zeros_like(old_frame)
else:
p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, gray, p0, None, **lk_params)
good_new = p1[st == 1]
good_old = p0[st == 1]
dx = np.mean(good_new[:, 0] - good_old[:, 0])
dy = np.mean(good_new[:, 1] - good_old[:, 1])
mask = np.zeros_like(old_frame)
mask = cv2.line(mask, (int(np.mean(good_new[:, 0])), int(np.mean(good_new[:, 1]))),
(int(np.mean(good_old[:, 0]) + dx), int(np.mean(good_old[:, 1]) + dy)), (0, 0, 255), 2)
img = cv2.add(frame, mask)
cv2.imshow('frame', img)
k = cv2.waitKey(30) & 0xff
if k == 27:
break
old_gray = gray.copy()
p0 = good_new.reshape(-1, 1, 2)
old_frame = frame.copy()
else:
break
```
6. 释放资源并关闭窗口:
```
cap.release()
cv2.destroyAllWindows()
```
上述代码通过计算光流来获取摄像头的运动方向,并在图像中绘制出运动方向的线段,从而可以实时观察摄像头的运动方向。
阅读全文