多智能体 分布式规划实现代码
时间: 2023-10-11 22:08:39 浏览: 148
多智能体分布式规划的实现代码可以采用一些著名的框架,例如MADDPG和MARL。以下是一个使用MADDPG算法实现的多智能体分布式规划的示例代码:
```
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
from model import Actor, Critic
from memory import ReplayBuffer
class MADDPG:
def __init__(self, state_dim, action_dim, num_agents, actor_hidden_dim, critic_hidden_dim,
actor_lr, critic_lr, gamma, tau, buffer_size, batch_size):
self.state_dim = state_dim
self.action_dim = action_dim
self.num_agents = num_agents
self.actor_hidden_dim = actor_hidden_dim
self.critic_hidden_dim = critic_hidden_dim
self.actor_lr = actor_lr
self.critic_lr = critic_lr
self.gamma = gamma
self.tau = tau
self.buffer_size = buffer_size
self.batch_size = batch_size
self.actor_local = [Actor(state_dim, action_dim, actor_hidden_dim) for i in range(num_agents)]
self.actor_target = [Actor(state_dim, action_dim, actor_hidden_dim) for i in range(num_agents)]
self.critic_local = Critic(state_dim * num_agents, action_dim * num_agents, critic_hidden_dim)
self.critic_target = Critic(state_dim * num_agents, action_dim * num_agents, critic_hidden_dim)
self.memory = ReplayBuffer(buffer_size, batch_size)
self.actor_optimizers = [optim.Adam(actor.parameters(), lr=actor_lr) for actor in self.actor_local]
self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=critic_lr)
def act(self, obs, noise=0.0):
actions = []
for i in range(self.num_agents):
obs = torch.from_numpy(obs[i]).float().unsqueeze(0)
action = self.actor_local[i](obs).squeeze(0).detach().numpy()
action += noise * np.random.normal(size=self.action_dim)
action = np.clip(action, -1, 1)
actions.append(action)
return actions
def step(self, state, action, reward, next_state, done):
self.memory.add(state, action, reward, next_state, done)
if len(self.memory) > self.batch_size:
experiences = self.memory.sample()
self.learn(experiences)
def learn(self, experiences):
states, actions, rewards, next_states, dones = experiences
# update critic
with torch.no_grad():
actions_next = [self.actor_target[i](next_states[:,i,:]) for i in range(self.num_agents)]
actions_next = torch.cat(actions_next, dim=1)
q_targets_next = self.critic_target(next_states.view(-1, self.state_dim * self.num_agents), actions_next)
q_targets = rewards.sum(dim=1, keepdim=True) + self.gamma * q_targets_next * (1 - dones.sum(dim=1, keepdim=True))
q_expected = self.critic_local(states.view(-1, self.state_dim * self.num_agents), actions.view(-1, self.action_dim * self.num_agents))
critic_loss = F.mse_loss(q_expected, q_targets)
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# update actor
for i in range(self.num_agents):
actions_i = actions.clone()
actions_i[:,i,:] = self.actor_local[i](states[:,i,:])
actor_loss = -self.critic_local(states.view(-1, self.state_dim * self.num_agents), actions_i.view(-1, self.action_dim * self.num_agents)).mean()
self.actor_optimizers[i].zero_grad()
actor_loss.backward()
self.actor_optimizers[i].step()
# update target networks
self.soft_update(self.critic_local, self.critic_target)
for i in range(self.num_agents):
self.soft_update(self.actor_local[i], self.actor_target[i])
def soft_update(self, local_model, target_model):
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(self.tau*local_param.data + (1.0-self.tau)*target_param.data)
```
上述代码中的`Actor`和`Critic`模型可以使用PyTorch定义,`ReplayBuffer`可以使用一个简单的数组或者更为高效的数据结构,例如优先经验回放。
此外,还需要编写一个主循环,以与环境交互并调用`MADDPG`实例的`act`和`step`方法,例如:
```
while True:
obs = env.reset()
noise = max(0.1, 1.0 - episode / 1000.0) * 0.2
for t in range(max_steps):
actions = agent.act(obs, noise)
next_obs, rewards, dones, _ = env.step(actions)
agent.step(obs, actions, rewards, next_obs, dones)
obs = next_obs
if np.any(dones):
break
episode += 1
```
其中,`env`是与环境交互的对象,`max_steps`是每个episode的最大步数,`episode`是当前episode的编号,`noise`是加到动作上的高斯噪声的标准差,随着训练进行而减小。
阅读全文