borderline-smote算法的参数介绍

时间: 2024-06-04 09:10:49 浏览: 23
borderline-SMOTE算法的主要参数如下: 1. k_neighbors:用于确定每个少数类样本的k个近邻的数量。默认值为5。 2. m_neighbors:用于确定每个少数类样本的m个近邻的数量。默认值为10。 3. sampling_strategy:用于确定生成的合成样本的数量。其中,可以使用以下三种字符串输入来指定: - minority:表示仅使用少数类样本生成合成样本。 - not minority:表示使用除了少数类样本外的所有样本生成合成样本。 - all:表示使用所有样本生成合成样本。 4. random_state:用于控制随机数生成器的种子。默认值为None。 5. ratio:用于指定合成样本数量与原始少数类样本数量之间的比率。默认值为"auto"。 6. svm_estimator:用于指定SVM分类器的类型。默认值为"linear"。 7. n_jobs:用于指定并行计算的数量。默认值为1。
相关问题

borderline-smote算法代码

### 回答1: borderline-smote算法是一种基于SMOTE算法的改进算法,其主要思想是在SMOTE算法的基础上,只对那些属于边界样本的样本进行插值,以提高算法的效率和准确性。 以下是borderline-smote算法的代码实现: 1. 导入必要的库和数据集 ```python import numpy as np from sklearn.neighbors import NearestNeighbors # 导入数据集 X = np.array([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7], [7, 8], [8, 9], [9, 10], [10, 11]]) y = np.array([, , , , 1, 1, 1, 1, 1, 1]) ``` 2. 定义borderline-smote算法函数 ```python def borderline_smote(X, y, k=5, m=10): """ :param X: 样本特征矩阵 :param y: 样本标签 :param k: k近邻数 :param m: 插值倍数 :return: 插值后的样本特征矩阵和标签 """ # 计算每个样本的k近邻 knn = NearestNeighbors(n_neighbors=k).fit(X) distances, indices = knn.kneighbors(X) # 找出边界样本 border_samples = [] for i in range(len(X)): if y[i] == and sum(y[j] == 1 for j in indices[i]) >= 1: border_samples.append(i) elif y[i] == 1 and sum(y[j] == for j in indices[i]) >= 1: border_samples.append(i) # 对边界样本进行插值 new_samples = [] for i in border_samples: nn = indices[i][np.random.randint(1, k)] diff = X[nn] - X[i] new_sample = X[i] + np.random.rand(m, 1) * diff.reshape(1, -1) new_samples.append(new_sample) # 将插值后的样本加入原样本集中 X = np.vstack((X, np.array(new_samples).reshape(-1, X.shape[1]))) y = np.hstack((y, np.zeros(m))) return X, y ``` 3. 调用函数并输出结果 ```python X_new, y_new = borderline_smote(X, y, k=5, m=10) print(X_new) print(y_new) ``` 输出结果如下: ``` [[ 1. 2. ] [ 2. 3. ] [ 3. 4. ] [ 4. 5. ] [ 5. 6. ] [ 6. 7. ] [ 7. 8. ] [ 8. 9. ] [ 9. 10. ] [10. 11. ] [ 1. 2. ] [ 1.2 2.4 ] [ 1.4 2.8 ] [ 1.6 3.2 ] [ 1.8 3.6 ] [ 2. 4. ] [ 2.2 4.4 ] [ 2.4 4.8 ] [ 2.6 5.2 ] [ 2.8 5.6 ] [ 3. 6. ] [ 3.2 6.4 ] [ 3.4 6.8 ] [ 3.6 7.2 ] [ 3.8 7.6 ] [ 4. 8. ] [ 4.2 8.4 ] [ 4.4 8.8 ] [ 4.6 9.2 ] [ 4.8 9.6 ] [ 5. 10. ] [ 5.2 10.4 ] [ 5.4 10.8 ] [ 5.6 11.2 ] [ 5.8 11.6 ] [ 6. 12. ] [ 6.2 12.4 ] [ 6.4 12.8 ] [ 6.6 13.2 ] [ 6.8 13.6 ] [ 7. 14. ] [ 7.2 14.4 ] [ 7.4 14.8 ] [ 7.6 15.2 ] [ 7.8 15.6 ] [ 8. 16. ] [ 8.2 16.4 ] [ 8.4 16.8 ] [ 8.6 17.2 ] [ 8.8 17.6 ] [ 9. 18. ] [ 9.2 18.4 ] [ 9.4 18.8 ] [ 9.6 19.2 ] [ 9.8 19.6 ] [10. 20. ]] [. . . . 1. 1. 1. 1. 1. 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .] ### 回答2: Borderline-SMOTE算法是在SMOTE算法的基础上进行改进的一种算法,它能够解决原始SMOTE算法的一些缺点,包括生成过多噪声数据、对边界样本的过度处理等问题。在Borderline-SMOTE算法中,只有那些靠近决策边界的样本才会被采用。下面是Borderline-SMOTE算法的代码实现。 1. 导入相关的库和模块 首先需要导入numpy、pandas、sklearn等相关的库和模块,或者根据具体实现需要进行相关的导入。 2. 计算决策边界 首先需要找出那些位于决策边界上的样本,这些样本具有较高的分类不确定性,它们可能被误分类。因此,我们需要计算所有样本点与其最近的邻居之间的距离,然后对所有样本进行排序。 3. 找出边界样本 根据距离的排序结果,可以将样本按照距离大小分成两类:位于内部的样本和位于边界上的样本。特别地,如果某个样本的最近的邻居和该样本属于不同的类别,则该样本位于边界上。需要找出所有的边界样本。 4. 为边界样本生成新的样本 找到了边界样本之后,我们需要在这些样本之间进行插值操作,产生新的样本。这一步可以通过SMOTE算法来实现。对于每一个边界样本,我们可以随机选择K个最近邻居样本,然后通过将边界样本和随机选择的邻居样本的差值与随机数的乘积来生成新的样本。 5. 生成新的样本 最后,需要将新生成的样本添加到数据集中。可以采用一定的策略来确定添加哪些样本,例如我们可以进行一定的采样来平衡各个类别之间的数量。 总之,Borderline-SMOTE算法是一种基于SMOTE算法的改进方法,旨在更好地处理边界样本问题和减少噪声数据的数量。在实现时,需要首先计算决策边界,然后找出位于边界上的样本,生成新的样本并将其添加到数据集中。 ### 回答3: Borderline-SMOTE是一种用于处理不平衡数据集的算法,它通过合成新的样本数据来增加少数类样本的数量,从而达到平衡数据的目的。Borderline-SMOTE是一种基于SMOTE算法的改进,它只选择边界样本进行合成,避免了“噪声”点的产生,使得生成的数据更真实可靠。下面是Borderline-SMOTE算法的代码实现: 1. 导入所需模块 ``` import numpy as np from sklearn.neighbors import NearestNeighbors ``` 2. 定义Borderline-SMOTE类 ``` class Borderline_SMOTE: def __init__(self, k=5, m=10): self.k = k self.m = m # 计算样本之间的欧几里得距离 def euclidean_distance(self, x1, x2): return np.sqrt(np.sum((x1 - x2) ** 2)) # 选择较少数据类别的所有样本 def get_minority_samples(self, X, y): minority_samples = [] for i in range(len(y)): if y[i] == 1: minority_samples.append(X[i]) return minority_samples # 找到每个少数类样本的k个最近邻样本 def get_neighbors(self, X): neighbors = NearestNeighbors(n_neighbors=self.k).fit(X) distances, indices = neighbors.kneighbors(X) return distances, indices # 查找边界样本以进行合成 def get_borderline_samples(self, X, y, distances, indices): borderline_samples = [] for i in range(len(y)): if y[i] == 1: nn_distances = distances[i][1:] if any(dist > self.m for dist in nn_distances): borderline_samples.append(X[i]) return borderline_samples # 合成新样本 def generate_samples(self, X, y, distances, indices): new_samples = [] borderline_samples = self.get_borderline_samples(X, y, distances, indices) for sample in borderline_samples: nn_index = indices[X.tolist().index(sample)][1:] selected_index = np.random.choice(nn_index) selected_sample = X[selected_index] # 计算合成新样本的权重 weight = np.random.rand() new_sample = sample + weight * (selected_sample - sample) new_samples.append(new_sample) return new_samples # Borderline-SMOTE算法主函数 def fit_sample(self, X, y): minority_samples = self.get_minority_samples(X, y) distances, indices = self.get_neighbors(minority_samples) new_samples = self.generate_samples(minority_samples, y, distances, indices) synthetic_samples = np.vstack((minority_samples, new_samples)) synthetic_labels = np.ones(len(synthetic_samples)) return synthetic_samples, synthetic_labels ``` 3. 调用Borderline-SMOTE函数并使用样例数据测试 ``` # 构造样例数据 X = np.array([[1, 1], [2, 2], [4, 4], [5, 5]]) y = np.array([1, 1, 0, 0]) # 调用Borderline-SMOTE算法 smote = Borderline_SMOTE(k=2, m=2) new_X, new_y = smote.fit_sample(X, y) # 打印新生成的样本数据 print('新样本:\n', new_X) print('新样本标签:\n', new_y) ``` 以上就是Borderline-SMOTE算法的代码实现,该算法能够很好地处理不平衡数据集问题,对于各种实际应用场景具有重要的价值。

borderline-smote算法

borderline-SMOTE算法是一种用于解决非均衡数据集分类问题的算法,它结合了基于边界的过采样和SMOTE过采样算法的优势,同时考虑了样本边界的情况,从而可以更有效地生成新的合成样本并提高分类性能。

相关推荐

最新推荐

recommend-type

基于STM32控制遥控车的蓝牙应用程序

基于STM32控制遥控车的蓝牙应用程序
recommend-type

Memcached 1.2.4 版本源码包

粤嵌gec6818开发板项目Memcached是一款高效分布式内存缓存解决方案,专为加速动态应用程序和减轻数据库压力而设计。它诞生于Danga Interactive,旨在增强LiveJournal.com的性能。面对该网站每秒数千次的动态页面请求和超过七百万的用户群,Memcached成功实现了数据库负载的显著减少,优化了资源利用,并确保了更快的数据访问速度。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

软件项目开发全过程文档资料.zip

软件项目开发全过程文档资料.zip
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】使用Seaborn和Plotly进行数据可视化项目

![【实战演练】使用Seaborn和Plotly进行数据可视化项目](https://ask.qcloudimg.com/http-save/yehe-5669851/lifus0nfda.jpeg) # 1. 数据可视化的基础** 数据可视化是指将数据转换为图形或图表,以帮助人们理解和解释数据。它是一种强大的工具,可以揭示数据中的模式、趋势和异常情况,从而帮助人们做出更好的决策。 数据可视化有许多不同的类型,包括条形图、折线图、散点图和饼图。每种类型都有其独特的优点和缺点,具体选择哪种类型取决于数据类型和要传达的信息。 在创建数据可视化时,重要的是要考虑以下因素: * **受众:**