用c++语言,实现基于Ncc(归一化互相关匹配法)算法的图像匹配,并根据结果矩阵对待测图像进行变换
时间: 2024-04-10 12:26:57 浏览: 146
好的,我来帮你实现基于NCC算法的图像匹配并对待测图像进行变换。
首先,我们需要包含相应的头文件和命名空间:
```cpp
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
```
接下来,我们定义一个函数来实现NCC算法的图像匹配:
```cpp
void imageMatchingNCC(Mat& img1, Mat& img2, Mat& result) {
int width = img1.cols - img2.cols + 1;
int height = img1.rows - img2.rows + 1;
result.create(height, width, CV_32FC1);
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
float sum1 = 0, sum2 = 0;
float sum_sq1 = 0, sum_sq2 = 0;
float sum12 = 0;
for (int j = 0; j < img2.rows; j++) {
const uchar* ptr1 = img1.ptr<uchar>(y + j) + x;
const uchar* ptr2 = img2.ptr<uchar>(j);
for (int i = 0; i < img2.cols; i++) {
float p1 = static_cast<float>(*ptr1++);
float p2 = static_cast<float>(*ptr2++);
sum1 += p1;
sum_sq1 += p1 * p1;
sum2 += p2;
sum_sq2 += p2 * p2;
sum12 += p1 * p2;
}
}
float num = img2.cols * img2.rows * sum12 - sum1 * sum2;
float den = sqrt((img2.cols * img2.rows * sum_sq1 - sum1 * sum1) *
(img2.cols * img2.rows * sum_sq2 - sum2 * sum2));
result.at<float>(y, x) = num / den;
}
}
}
```
然后,我们可以定义一个函数来对待测图像进行变换,可以根据结果矩阵来确定变换的参数:
```cpp
void transformImage(Mat& inputImage, Mat& transformedImage, Mat& result, float threshold) {
double minVal, maxVal;
Point minLoc, maxLoc;
minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc);
if (maxVal >= threshold) {
Mat transformMatrix = Mat::eye(2, 3, CV_32F);
transformMatrix.at<float>(0, 2) = maxLoc.x;
transformMatrix.at<float>(1, 2) = maxLoc.y;
warpAffine(inputImage, transformedImage, transformMatrix,
Size(inputImage.cols, inputImage.rows));
}
else {
transformedImage = inputImage.clone();
}
}
```
最后,我们可以在`main`函数中调用这两个函数来实现图像匹配和变换:
```cpp
int main() {
Mat img1 = imread("path_to_image1.jpg", IMREAD_GRAYSCALE);
Mat img2 = imread("path_to_image2.jpg", IMREAD_GRAYSCALE);
if (img1.empty() || img2.empty()) {
cout << "Failed to load images!" << endl;
return -1;
}
Mat result;
imageMatchingNCC(img1, img2, result);
Mat transformedImage;
float threshold = 0.8; // 设置阈值,决定是否进行变换
transformImage(img1, transformedImage, result, threshold);
imshow("Input Image", img1);
imshow("Transformed Image", transformedImage);
waitKey(0);
return 0;
}
```
请确保将`path_to_image1.jpg`和`path_to_image2.jpg`替换为你实际的图像路径。
以上是一个简单的基于NCC算法的图像匹配和变换的实现示例。希望能帮到你!如有其他问题,请随时追问。
阅读全文