在YOLOV5的loss.py中添加generlize focal loss的代码怎么写?
时间: 2023-11-27 17:03:46 浏览: 269
focal loss.py
以下是在YOLOV5的loss.py中添加generalized focal loss的代码示例:
```python
import torch.nn.functional as F
def generalized_focal_loss(pred, target, alpha, gamma):
ce = F.binary_cross_entropy_with_logits(pred, target, reduction='none')
pt = torch.exp(-ce)
focal_loss = alpha * (1 - pt) ** gamma * ce
return focal_loss.mean()
class FocalLoss(nn.Module):
def __init__(self, alpha=0.25, gamma=2.0):
super(FocalLoss, self).__init__()
self.alpha = alpha
self.gamma = gamma
def forward(self, pred, target):
pos_mask = target == 1
neg_mask = target == 0
pos_loss = generalized_focal_loss(pred[pos_mask], target[pos_mask], self.alpha, self.gamma)
neg_loss = F.binary_cross_entropy_with_logits(pred[neg_mask], target[neg_mask], reduction='mean')
num_pos = pos_mask.float().sum()
num_neg = neg_mask.float().sum()
loss = (pos_loss * num_pos + neg_loss * num_neg) / (num_pos + num_neg)
return loss
```
在这个示例中,我们使用PyTorch的函数实现了generalized focal loss。然后,我们创建了一个FocalLoss类,并在其中实现了前向传递函数。在前向传递函数中,我们首先根据目标值创建了正面和负面的掩码,然后计算了正面和负面的损失。最后,我们将正面和负面的损失平均并返回总损失。
为了使用这个FocalLoss,您需要在YOLOV5的train.py或其他训练脚本中导入它,并将其传递给您的优化器,如下所示:
```python
from loss import FocalLoss
model = Yolov5(...)
optimizer = torch.optim.Adam(model.parameters(), lr=...)
criterion = FocalLoss()
for epoch in range(num_epochs):
...
for images, targets in dataloader:
...
outputs = model(images)
loss = criterion(outputs, targets)
...
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
阅读全文