python 如何通过socket发送00 ,01, 00 ,00, 00 ,06 ,01, 05, 00 ,01, FF 00,

时间: 2023-09-03 08:12:17 浏览: 40
可以使用 Python 的 `socket` 模块来发送数据。下面是一个示例代码: ```python import socket # 设置 IP 地址和端口号 ip_address = "127.0.0.1" port = 8888 # 创建一个 TCP socket 对象 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # 连接服务器 sock.connect((ip_address, port)) # 发送数据 data = b'\x00\x01\x00\x00\x00\x06\x01\x05\x00\x01\xff\x00' sock.sendall(data) # 关闭连接 sock.close() ``` 这里使用了字节串 `b'\x00\x01\x00\x00\x00\x06\x01\x05\x00\x01\xff\x00'` 来表示要发送的数据,其中 `\x00` 表示一个字节的十六进制数字 00,`\xff` 表示一个字节的十六进制数字 FF。在发送数据时,需要使用 `sendall` 方法将数据一次性发送出去。
相关问题

python 如何通过socket发送00 ,01, 00 ,00, 00 ,06 ,01, 05, 00 ,01, FF 00二进制

可以使用Python的socket模块来发送二进制数据。以下是一个示例代码: ```python import socket # 创建socket对象 client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # 连接服务器 server_address = ('localhost', 8080) client_socket.connect(server_address) # 发送二进制数据 data = b'\x00\x01\x00\x00\x00\x06\x01\x05\x00\x01\xff\x00' client_socket.sendall(data) # 关闭连接 client_socket.close() ``` 在这个示例中,我们首先创建了一个socket对象,并使用connect()方法连接到服务器。然后,我们将二进制数据存储在一个变量中,并使用sendall()方法将其发送到服务器。最后,我们使用close()方法关闭连接。 需要注意的是,二进制数据应该以字节串(bytes)的形式存储,即在字符串前面加上前缀“b”。在数据中使用反斜杠(\)来转义特殊字符,如\x00表示十六进制值为0的字节。

python发送报文

Python发送报文可以使用socket库中的socket对象进行实现。可以先创建一个socket对象,然后使用sendto()方法发送报文。在发送报文之前,需要将报文按照协议格式进行封装,可以使用引用中提供的函数进行封装。 具体步骤如下: 1. 创建socket对象,可以使用UDP或TCP协议。 2. 使用引用中提供的函数对报文进行封装。 3. 使用sendto()方法发送报文。 示例代码如下(以UDP协议为例): ``` import socket # 创建socket对象 client_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # 封装报文 data = '500300' ff_data = get_ff_format(data) sf_data = func_sf_format(data) # 发送报文 client_socket.sendto(ff_data.encode(), ('127.0.0.1', 8888)) client_socket.sendto(sf_data.encode(), ('127.0.0.1', 8888)) # 关闭socket对象 client_socket.close() ```

相关推荐

Example of protocol with TRG-STA-GRS command cycle The initialization and reconnection of the communication is described in the chapter before. In order to initialize the communication, the MS toggles the Sync flag between 0 and 1 with cycle duration of 500 ms. Once the SC recognizes the Sync flag, it answers with an ACK frame of the same value as the detected Sync flag. The command STA is set to 2 (STA(02)) by the SC to request continuous status information. Hereupon, the MS sends its state with every answer. A prerequisite to accept commands by the MS is STA(01) (reply code from halm MS) and TOK(01). Direction Command code Reply Code Flag Remark SC → MS STA(02),TRG(01) Trigger a measurement * MS → SC Handshake acknowledge MS → SC STA(01), TRG(01) Trigger accepted SC → MS Handshake acknowledge SC → MS STA(02), TRG(FF) Command completed MS → SC Handshake acknowledge MS → SC TRG(FF), STA(02) TOK(FF) Reply completed, MS busy, cell transport not allowed SC → MS Handshake acknowledge MS → SC STA(02) TOK(01) Cell transport allowed SC → MS Handshake acknowledge MS → SC STA(01) RES(01) Measurement result data available SC → MS Handshake acknowledge SC → MS STA(02), GRS(01) MS → SC Handshake acknowledge MS → SC STA(01), GRS(01) RES(FF) Including result data SC → MS Handshake acknowledge SC → MS STA(02), GRS(FF) Command completed MS → SC Handshake acknowledge MS → SC STA(01), GRS(FF) Reply completed SC → MS Handshake acknowledge * SC sends TWO commands within one frame. In consequence, MS will reply with TWO answers. Same procedure for THREE commands. Please always send STA(02) together with every command. Do not send STA(FF) which will stop MS sending status and results.根据这个协议,帮我写一份UDP通讯的demo

修改代码使其能实现动态表情包的发送和显示#表情包模块 #用四个按钮定义四种表情包 b1 = b2 = b3 =b4 =b5='' #四幅图片 p1 = tkinter.PhotoImage(file='emoji/facepalm.png') p2 = tkinter.PhotoImage(file='emoji/smirk.png') p3 = tkinter.PhotoImage(file='emoji/concerned.png') p4 = tkinter.PhotoImage(file='emoji/smart.png') p5 = tkinter.PhotoImage(file='emoji/tushe.png') #用字典将标识符与表情图片一一对应 dic = {'aa**':p1,'bb**':p2,'cc**':p3,'dd**':p4,'ff**':p5} ee = 0 #表情面板开关标志 #发送表情的函数 def send_mark(exp): ''' :param exp: 表情图片对应的标识符 :return: ''' global ee mes = exp +':;'+user+':;'+chat_to s.send(mes.encode()) b1.destroy() b2.destroy() b3.destroy() b4.destroy() b5.destroy() ee = 0 #四种表情包的标识符发送函数 def bb1(): send_mark('aa**') def bb2(): send_mark('bb**') def bb3(): send_mark('cc**') def bb4(): send_mark('dd**') def bb5(): send_mark('ff**') #表情包面包操控函数 def express_board(): global b1,b2,b3,b4,b5,ee if ee == 0: #打开表情包面板 ee = 1 b1 = tkinter.Button(root,command=bb1,image=p1,relief=tkinter.FLAT,bd=0) b2 = tkinter.Button(root,command=bb2,image=p2,relief=tkinter.FLAT,bd=0) b3 = tkinter.Button(root,command=bb3,image=p3,relief=tkinter.FLAT,bd=0) b4 = tkinter.Button(root,command=bb4,image=p4,relief=tkinter.FLAT,bd=0) b5 = tkinter.Button(root,command=bb5,image=p5,relief=tkinter.FLAT,bd=0) b1.place(x=5,y=248) b2.place(x=75,y=248) b3.place(x=145, y=248) b4.place(x=215, y=248) b5.place(x=285, y=248) else: #关闭表情包面板 ee = 0 b1.destroy() b2.destroy() b3.destroy() b4.destroy() b5.destroy() #表情包面板开关按钮 eBut = tkinter.Button(root,text='表情包',command=express_board) eBut.place(x=5,y=320,width=60,height=30)

最新推荐

recommend-type

python把1变成01的步骤总结

在本文里我们给学习python的朋友们整理了关于python把1变成01的步骤总结内容,有需要的朋友们学习下。
recommend-type

解决keras,val_categorical_accuracy:,0.0000e+00问题

然而,在实践中,我们可能会遇到一些问题,例如在训练过程中遇到`val_categorical_accuracy: 0.0000e+00`的情况。这通常意味着模型在验证集上的分类精度为零,即模型无法正确预测任何验证样本的类别。 问题描述: ...
recommend-type

python:socket传输大文件示例

在Python编程中,Socket是网络通信的基本模块,用于实现不同计算机之间的数据传输。本文将深入讲解如何使用Python的Socket库来传输大文件。文件传输在许多应用中都是必不可少的,例如分布式系统、文件共享和备份等。...
recommend-type

Python基于动态规划算法解决01背包问题实例

Python动态规划解决01背包问题的优点在于它的时间复杂度相对较低,一般为O(nC),其中n是物品数量,C是背包容量。虽然它需要额外的空间存储子问题的解,但通常在实际应用中,这个空间复杂度是可以接受的。 了解01...
recommend-type

Python中使用socket发送HTTP请求数据接收不完整问题解决方法

主要介绍了Python中使用socket发送HTTP请求数据接收不完整问题解决方法,本文使用一个循环解决了数据不完整问题,需要的朋友可以参考下
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。