class GatherOperation(Function): @staticmethod def forward(ctx, features: torch.Tensor, idx: torch.Tensor) -> torch.Tensor: """ :param ctx: :param features: (B, C, N) :param idx: (B, npoint) index tensor of the features to gather :return: output: (B, C, npoint) """ assert features.is_contiguous() assert idx.is_contiguous() B, npoint = idx.size() _, C, N = features.size() output = torch.cuda.FloatTensor(B, C, npoint) pointnet2.gather_points_wrapper(B, C, N, npoint, features, idx, output) ctx.for_backwards = (idx, C, N) return output @staticmethod def backward(ctx, grad_out): idx, C, N = ctx.for_backwards B, npoint = idx.size() grad_features = Variable(torch.cuda.FloatTensor(B, C, N).zero_()) grad_out_data = grad_out.data.contiguous() pointnet2.gather_points_grad_wrapper(B, C, N, npoint, grad_out_data, idx, grad_features.data) return grad_features, None gather_operation = GatherOperation.apply
时间: 2023-06-26 17:08:55 浏览: 341
利用torch.autograd.Function自定义层的forward和backward
这是一个 PyTorch 自定义函数 GatherOperation,用于实现从给定张量中根据索引提取特定元素的功能。具体地,输入 features 是形状为 (B, C, N) 的张量,表示 B 个样本中每个样本的 N 个特征向量,每个向量有 C 个元素。输入 idx 是形状为 (B, npoint) 的整数张量,表示要从 features 中提取的元素的索引。输出是形状为 (B, C, npoint) 的张量,表示提取的结果。
在 forward 函数中,首先对输入的 features 和 idx 进行了连续性检查,然后调用了一个 C++ 实现的 gather_points_wrapper 函数,将提取结果存储在 output 变量中,并将 idx、C、N 存储在 ctx 中以备反向传播使用。在 backward 函数中,首先从 ctx 中恢复 idx、C、N,然后创建一个和 features 相同形状的 grad_features 变量,调用 gather_points_grad_wrapper 函数计算 grad_features,并返回。
这个 GatherOperation 函数在 PointNet++ 中被广泛使用,用于实现点云分类和语义分割等任务中的采样和汇聚操作。
阅读全文