在已经有训练集测试集和训练集的bounding_boxes写一个详细的汽车检测代码
时间: 2024-03-07 10:48:57 浏览: 112
yolov10训练好的WiderPerson行人检测模型+数据集
好的,以下是一个基于PyTorch框架的汽车检测代码示例,可以根据你的具体数据集进行修改:
```
import torch
import torch.nn as nn
import torchvision
import numpy as np
import cv2
# 定义模型
class CarDetector(nn.Module):
def __init__(self):
super(CarDetector, self).__init__()
self.features = torchvision.models.resnet18(pretrained=True)
self.features.fc = nn.Linear(512, 2 * 4) # 2个坐标,每个坐标4个值
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), 2, 4)
return x
# 定义数据加载函数
class CarDataset(torch.utils.data.Dataset):
def __init__(self, image_paths, boxes):
self.image_paths = image_paths
self.boxes = boxes
def __getitem__(self, idx):
image_path = self.image_paths[idx]
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
box = self.boxes[idx]
x1, y1, x2, y2 = box
image = image[y1:y2, x1:x2, :]
image = cv2.resize(image, (224, 224))
image = image.transpose((2, 0, 1))
image = torch.from_numpy(image).float()
return image, torch.Tensor(box)
def __len__(self):
return len(self.image_paths)
# 定义训练函数
def train(model, dataloader, criterion, optimizer):
model.train()
total_loss = 0.
for images, targets in dataloader:
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss / len(dataloader)
# 定义测试函数
def test(model, dataloader, criterion):
model.eval()
total_loss = 0.
with torch.no_grad():
for images, targets in dataloader:
outputs = model(images)
loss = criterion(outputs, targets)
total_loss += loss.item()
return total_loss / len(dataloader)
# 加载数据
train_image_paths = [...] # 训练集图片路径列表
train_boxes = [...] # 训练集标注框列表
test_image_paths = [...] # 测试集图片路径列表
test_boxes = [...] # 测试集标注框列表
train_dataset = CarDataset(train_image_paths, train_boxes)
test_dataset = CarDataset(test_image_paths, test_boxes)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=True)
# 定义模型、损失函数和优化器
model = CarDetector()
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(10):
train_loss = train(model, train_loader, criterion, optimizer)
test_loss = test(model, test_loader, criterion)
print('epoch %d, train loss: %.4f, test loss: %.4f' % (epoch+1, train_loss, test_loss))
```
注意,这只是一个简单的示例代码。如果你的数据集比较复杂,还需要进行更多的数据预处理和数据增强,以及调整模型的参数和架构,来提高模型的准确性和鲁棒性。
阅读全文