patch(tgx0+[-Nlong -Nlong Nlong Nlong],tgy0+[-Nlati Nlati Nlati -Nlati],'c:','EdgeColor','r','FaceColor','none')
时间: 2024-01-24 11:02:44 浏览: 106
This MATLAB code plots a red square patch with corners at (-Nlong, -Nlati), (-Nlong, Nlati), (Nlong, Nlati), and (Nlong, -Nlati) on a plot with x-axis values in the array tgx0 and y-axis values in the array tgy0. The 'c:' argument specifies a dashed cyan line style for the edge of the patch. The 'EdgeColor' argument sets the color of the patch edge to red, and the 'FaceColor' argument sets the fill color of the patch to none (i.e., transparent).
相关问题
用中文解释patch(tgx0+[-Nlong -Nlong Nlong Nlong],tgy0+[-Nlati Nlati Nlati -Nlati],'c:','EdgeColor','r','FaceColor','none')
这段代码是用来绘制一个矩形边框的。其中,tgx0和tgy0是矩形的四个角点的经度和纬度坐标。[-Nlong -Nlong Nlong Nlong]和[-Nlati Nlati Nlati -Nlati]是用来确定矩形的大小的参数。'c:'表示线条的样式是虚线,'EdgeColor','r','FaceColor','none'则指定边框的颜色为红色,不填充颜色。
牛顿法求解方程的最小正根x=tgx,用MATLAB求解
牛顿法(Newton-Raphson method)是一种用于数值逼近函数零点的经典迭代算法,对于非线性方程如`f(x) = tg(x) - x = 0`,可以用来找到其最小正实数根。以下是使用MATLAB来实现牛顿法的基本步骤:
1. 首先,我们需要定义函数和它的导数。在这个例子中,我们的函数是`tangens(x)`,即tg(x),导数是它的倒数sec^2(x)。
```matlab
function f = tg_minus_x(x)
f = tangens(x) - x;
end
function df = derivative_of_tg_minus_x(x)
df = diff(tangens(x)) - 1; % 使用diff得到sec^2(x) - 1
end
```
2. 然后编写牛顿法的迭代过程。我们从一个初始猜测值开始,然后不断更新这个值直到满足收敛条件。
```matlab
% 初始猜测值
x_guess = 0.1; % 或者选择其他合适的初始值
tolerance = 1e-6; % 设置收敛阈值
max_iterations = 100; % 设置最大迭代次数
for i = 1:max_iterations
% 计算当前函数值和导数值
fx = tg_minus_x(x_guess);
if abs(fx) < tolerance || isinf(fx) || isnan(fx) % 检查是否达到收敛条件
break;
end
dfx = derivative_of_tg_minus_x(x_guess);
% 更新x值
x_guess = x_guess - fx / dfx;
end
% 结果
x_root = x_guess;
```
3. 最后,你会得到迭代得到的近似最小正根 `x_root`。如果迭代过程中未满足收敛条件,则可能需要检查初始值的选择或者调整算法参数。
阅读全文
相关推荐















