data1_str = np.array(input_and_calculate()).astype(str) split_data = np.char.split(data1_str, sep=",") data_list = [list(map(float, row)) for row in split_data] data = np.array(data_list)

时间: 2023-11-28 17:05:52 浏览: 32
这段代码的作用是将从输入中获取的字符串转换为numpy数组,并将其转换为浮点型数据。具体来说,代码首先调用`input_and_calculate()`函数获取输入的数据,并将其转换为numpy数组类型。然后,使用`np.char.split`函数按逗号分隔每个字符串元素,并将其转换为一个多维数组。接着,使用列表推导式将每个字符串数组转换为浮点数数组,并将其保存到`data_list`列表中。最后,使用`np.array`函数将`data_list`列表转换为一个numpy数组,并将其赋值给`data`变量。这段代码常用于将从用户输入中获取的字符串数据转换为可以进行数值计算的numpy数组。
相关问题

为这段代码消除错误 data1_str = input_and_calculate().astype(str) split_data = np.char.split(data1_str , sep=",") data_str = (split_data) data = np.array([list(map(float, data_str.split(',')))])

这段代码中出现了多个错误,以下是我消除错误后的代码: ``` import numpy as np # 定义一个函数,用于读取用户输入和计算 def input_and_calculate(): # 这里是示例代码,读取用户输入并进行计算 result = [1, 2, 3, 4, 5] return result # 执行 input_and_calculate() 函数,并转换为字符串类型 data1_str = np.array(input_and_calculate()).astype(str) # 对字符串类型的数据执行字符串操作 split_data = np.char.split(data1_str, sep=",") # 将字符串列表转换为浮点数列表 data_list = [list(map(float, row)) for row in split_data] # 将浮点数列表转换为 NumPy 数组 data = np.array(data_list) print(data) ``` 我对代码进行了如下修改: 1. 将函数 `input_and_calculate()` 的返回值转换为 NumPy 数组对象,并使用 `astype(str)` 方法将数据类型转换为字符串类型。 2. 使用 `np.char.split()` 函数对字符串类型的数据进行字符串操作。 3. 将字符串列表转换为浮点数列表,并使用列表推导式和 `map()` 函数对每一行数据进行转换。 4. 将浮点数列表转换为 NumPy 数组对象。 需要注意的是,如果用户输入的数据中包含非数字字符,此代码将会出现错误。因此,你需要根据输入数据的实际情况进行相应的错误处理。

将上述转换实现于data1_str = np.array(input_and_calculate()).astype(str) split_data = np.char.split(data1_str, sep=",") data_list = [list(map(float, row)) for row in split_data] 数据 = np.array(data_list)中

可以将上述转换应用于`data_list`列表中的每个元素,例如: ``` data_list = [[float(x) for x in row] for row in split_data] # 或者 data_list = [list(map(float, row)) for row in split_data] ``` 这将使用列表推导式或`map()`函数将`split_data`列表中的每个元素转换为浮点数列表。然后,可以使用`np.array()`函数将`data_list`转换为numpy数组,例如: ``` 数据 = np.array(data_list) ``` 这将创建一个numpy数组,其中每个元素都是浮点数。

相关推荐

修改和补充下列代码得到十折交叉验证的平均auc值和平均aoc曲线,平均分类报告以及平均混淆矩阵 min_max_scaler = MinMaxScaler() X_train1, X_test1 = x[train_id], x[test_id] y_train1, y_test1 = y[train_id], y[test_id] # apply the same scaler to both sets of data X_train1 = min_max_scaler.fit_transform(X_train1) X_test1 = min_max_scaler.transform(X_test1) X_train1 = np.array(X_train1) X_test1 = np.array(X_test1) config = get_config() tree = gcForest(config) tree.fit(X_train1, y_train1) y_pred11 = tree.predict(X_test1) y_pred1.append(y_pred11 X_train.append(X_train1) X_test.append(X_test1) y_test.append(y_test1) y_train.append(y_train1) X_train_fuzzy1, X_test_fuzzy1 = X_fuzzy[train_id], X_fuzzy[test_id] y_train_fuzzy1, y_test_fuzzy1 = y_sampled[train_id], y_sampled[test_id] X_train_fuzzy1 = min_max_scaler.fit_transform(X_train_fuzzy1) X_test_fuzzy1 = min_max_scaler.transform(X_test_fuzzy1) X_train_fuzzy1 = np.array(X_train_fuzzy1) X_test_fuzzy1 = np.array(X_test_fuzzy1) config = get_config() tree = gcForest(config) tree.fit(X_train_fuzzy1, y_train_fuzzy1) y_predd = tree.predict(X_test_fuzzy1) y_pred.append(y_predd) X_test_fuzzy.append(X_test_fuzzy1) y_test_fuzzy.append(y_test_fuzzy1)y_pred = to_categorical(np.concatenate(y_pred), num_classes=3) y_pred1 = to_categorical(np.concatenate(y_pred1), num_classes=3) y_test = to_categorical(np.concatenate(y_test), num_classes=3) y_test_fuzzy = to_categorical(np.concatenate(y_test_fuzzy), num_classes=3) print(y_pred.shape) print(y_pred1.shape) print(y_test.shape) print(y_test_fuzzy.shape) # 深度森林 report1 = classification_report(y_test, y_prprint("DF",report1) report = classification_report(y_test_fuzzy, y_pred) print("DF-F",report) mse = mean_squared_error(y_test, y_pred1) rmse = math.sqrt(mse) print('深度森林RMSE:', rmse) print('深度森林Accuracy:', accuracy_score(y_test, y_pred1)) mse = mean_squared_error(y_test_fuzzy, y_pred) rmse = math.sqrt(mse) print('F深度森林RMSE:', rmse) print('F深度森林Accuracy:', accuracy_score(y_test_fuzzy, y_pred)) mse = mean_squared_error(y_test, y_pred) rmse = math.sqrt(mse) print('F?深度森林RMSE:', rmse) print('F?深度森林Accuracy:', accuracy_score(y_test, y_pred))

详细解释以下Python代码:import numpy as np import adi import matplotlib.pyplot as plt sample_rate = 1e6 # Hz center_freq = 915e6 # Hz num_samps = 100000 # number of samples per call to rx() sdr = adi.Pluto("ip:192.168.2.1") sdr.sample_rate = int(sample_rate) # Config Tx sdr.tx_rf_bandwidth = int(sample_rate) # filter cutoff, just set it to the same as sample rate sdr.tx_lo = int(center_freq) sdr.tx_hardwaregain_chan0 = -50 # Increase to increase tx power, valid range is -90 to 0 dB # Config Rx sdr.rx_lo = int(center_freq) sdr.rx_rf_bandwidth = int(sample_rate) sdr.rx_buffer_size = num_samps sdr.gain_control_mode_chan0 = 'manual' sdr.rx_hardwaregain_chan0 = 0.0 # dB, increase to increase the receive gain, but be careful not to saturate the ADC # Create transmit waveform (QPSK, 16 samples per symbol) num_symbols = 1000 x_int = np.random.randint(0, 4, num_symbols) # 0 to 3 x_degrees = x_int*360/4.0 + 45 # 45, 135, 225, 315 degrees x_radians = x_degrees*np.pi/180.0 # sin() and cos() takes in radians x_symbols = np.cos(x_radians) + 1j*np.sin(x_radians) # this produces our QPSK complex symbols samples = np.repeat(x_symbols, 16) # 16 samples per symbol (rectangular pulses) samples *= 2**14 # The PlutoSDR expects samples to be between -2^14 and +2^14, not -1 and +1 like some SDRs # Start the transmitter sdr.tx_cyclic_buffer = True # Enable cyclic buffers sdr.tx(samples) # start transmitting # Clear buffer just to be safe for i in range (0, 10): raw_data = sdr.rx() # Receive samples rx_samples = sdr.rx() print(rx_samples) # Stop transmitting sdr.tx_destroy_buffer() # Calculate power spectral density (frequency domain version of signal) psd = np.abs(np.fft.fftshift(np.fft.fft(rx_samples)))**2 psd_dB = 10*np.log10(psd) f = np.linspace(sample_rate/-2, sample_rate/2, len(psd)) # Plot time domain plt.figure(0) plt.plot(np.real(rx_samples[::100])) plt.plot(np.imag(rx_samples[::100])) plt.xlabel("Time") # Plot freq domain plt.figure(1) plt.plot(f/1e6, psd_dB) plt.xlabel("Frequency [MHz]") plt.ylabel("PSD") plt.show(),并分析该代码中QPSK信号的功率谱密度图的特点

优化这段代码df_in_grown_ebv = pd.read_table(open(r"C:\Users\荆晓燕\Desktop\20230515分品种计算育种值\生长性能育种值N72分组 (7).txt"), delim_whitespace=True, encoding="gb18030", header=None) df_in_breed_ebv = pd.read_table(open(r"C:\Users\荆晓燕\Desktop\20230515分品种计算育种值\繁殖性能育种值N72分组 (7).txt"), delim_whitespace=True, encoding="gb18030", header=None) # df_in_grown_Phenotype.columns = ['个体号', '活仔EBV', '21d窝重EBV', '断配EBV'] # df_in_breed_Phenotype.columns = ['个体号', '115EBV', '饲料转化率EBV', '瘦肉率EBV', '眼肌EBV', '背膘EBV'] df_in_breed_ebv.columns = ['个体号', '活仔EBV', '21d窝重EBV', '断配EBV'] df_in_grown_ebv.columns = ['个体号', '115daysEBV', '饲料转化率EBV', '瘦肉率EBV', '眼肌EBV', '背膘EBV'] NBA_mean = np.mean(df_in_breed_ebv['活仔EBV']) NBA_std = np.std(df_in_breed_ebv['活仔EBV']) days_mean = np.mean(df_in_grown_ebv['115daysEBV']) days_std = np.std(df_in_grown_ebv['115daysEBV']) fcr_mean = np.mean(df_in_grown_ebv['饲料转化率EBV']) fcr_std = np.std(df_in_grown_ebv['饲料转化率EBV']) output = pd.merge(df_in_grown_ebv, df_in_breed_ebv, how='inner', left_on='个体号', right_on='个体号') # output['计算长白母系指数'] = 0.3 * (NBA - NBA_mean)/NBA_std - 0.3 * (days - days_mean)/days_std - 0.3 * (fcr-fcr_mean)/fcr_std + 0.1 * (pcl-pcl_mean)/pcl_std output['计算长白母系指数'] = 0.29 * (df_in_breed_ebv['活仔EBV'] - NBA_mean)/NBA_std - 0.58 * (df_in_grown_ebv['115daysEBV']- days_mean)/days_std - 0.13 * (df_in_grown_ebv['饲料转化率EBV']-fcr_mean)/fcr_std MLI_mean = np.mean(output['计算长白母系指数']) MLI_std = np.std(output['计算长白母系指数']) output['校正长白母系指数'] = 25 * ((output['计算长白母系指数'] - MLI_mean)/MLI_std) + 100

请详细解释一下这段代码,每一句给上相应的详细注解:sub['t'] = 0 submission = [] for f in test: df = pd.read_csv(f) df.set_index('Time', drop=True, inplace=True) df['Id'] = f.split('/')[-1].split('.')[0] # df = df.fillna(0).reset_index(drop=True) df['Time_frac']=(df.index/df.index.max()).values#currently the index of data is actually "Time" df = pd.merge(df, tasks[['Id','t_kmeans']], how='left', on='Id').fillna(-1) # df = pd.merge(df, subjects[['Id','s_kmeans']], how='left', on='Id').fillna(-1) df = pd.merge(df, metadata_complex[['Id','Subject']+['Visit','Test','Medication','s_kmeans']], how='left', on='Id').fillna(-1) df_feats = fc.calculate(df, return_df=True, include_final_window=True, approve_sparsity=True, window_idx="begin") df = df.merge(df_feats, how="left", left_index=True, right_index=True) df.fillna(method="ffill", inplace=True) # res = pd.DataFrame(np.round(reg.predict(df[cols]).clip(0.0,1.0),3), columns=pcols) res_vals=[] for i_fold in range(N_FOLDS): res_val=np.round(regs[i_fold].predict(df[cols]).clip(0.0,1.0),3) res_vals.append(np.expand_dims(res_val,axis=2)) res_vals=np.mean(np.concatenate(res_vals,axis=2),axis=2) res = pd.DataFrame(res_vals, columns=pcols) df = pd.concat([df,res], axis=1) df['Id'] = df['Id'].astype(str) + '_' + df.index.astype(str) submission.append(df[scols]) submission = pd.concat(submission) submission = pd.merge(sub[['Id']], submission, how='left', on='Id').fillna(0.0) submission[scols].to_csv('submission.csv', index=False)

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩