ctc和attention代码
时间: 2023-07-02 22:11:02 浏览: 111
CTC(Connectionist Temporal Classification)和Attention是两种不同的序列建模方法,分别用于语音识别和自然语言处理等任务。下面是一个简单的实现示例:
1. CTC
CTC是一种无需对齐标签的序列建模方法,常用于语音识别和手写字符识别等任务。以下是一个使用TensorFlow实现CTC的示例:
```python
import tensorflow as tf
from tensorflow.keras import layers
# 定义模型
def ctc_model(input_dim, output_dim, units=128):
input = layers.Input(shape=(None, input_dim))
lstm = layers.LSTM(units, return_sequences=True)(input)
lstm = layers.LSTM(units, return_sequences=True)(lstm)
output = layers.Dense(output_dim, activation='softmax')(lstm)
model = tf.keras.Model(inputs=input, outputs=output)
return model
# 编译模型
model = ctc_model(input_dim=20, output_dim=10)
model.compile(loss=tf.keras.backend.ctc_batch_cost, optimizer='adam')
# 训练模型
model.fit(x_train, y_train, validation_data=(x_val, y_val), epochs=10)
```
其中,`ctc_batch_cost`是TensorFlow中的CTC损失函数。
2. Attention
Attention是一种机制,用于增强序列模型的表现力。以下是一个使用PyTorch实现Attention的示例:
```python
import torch
import torch.nn as nn
# 定义模型
class Attention(nn.Module):
def __init__(self, input_dim, hidden_dim):
super(Attention, self).__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.W = nn.Linear(input_dim, hidden_dim, bias=False)
self.U = nn.Linear(hidden_dim, hidden_dim, bias=False)
self.v = nn.Linear(hidden_dim, 1, bias=False)
def forward(self, inputs):
# inputs shape: (batch_size, seq_len, input_dim)
e = torch.tanh(self.W(inputs)) # e shape: (batch_size, seq_len, hidden_dim)
a = torch.softmax(self.v(e).transpose(1, 2), dim=2) # a shape: (batch_size, 1, seq_len)
v = torch.bmm(a, inputs).squeeze(1) # v shape: (batch_size, input_dim)
return v
class Seq2Seq(nn.Module):
def __init__(self, input_dim, output_dim, hidden_dim):
super(Seq2Seq, self).__init__()
self.encoder = nn.LSTM(input_dim, hidden_dim, batch_first=True)
self.decoder = nn.LSTM(output_dim, hidden_dim, batch_first=True)
self.attention = Attention(hidden_dim, hidden_dim)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, inputs, targets):
# inputs shape: (batch_size, seq_len, input_dim)
# targets shape: (batch_size, seq_len, output_dim)
encoder_outputs, _ = self.encoder(inputs)
decoder_outputs, _ = self.decoder(targets)
seq_len = decoder_outputs.size(1)
outputs = []
for t in range(seq_len):
context = self.attention(encoder_outputs)
decoder_input = decoder_outputs[:, t, :]
decoder_input = torch.cat((decoder_input, context), dim=1)
decoder_output, _ = self.decoder(decoder_input.unsqueeze(1))
output = self.fc(decoder_output.squeeze(1))
outputs.append(output)
return torch.stack(outputs, dim=1)
# 实例化模型
model = Seq2Seq(input_dim=20, output_dim=10, hidden_dim=128)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters())
# 训练模型
for epoch in range(10):
for inputs, targets in train_loader:
optimizer.zero_grad()
outputs = model(inputs, targets[:, :-1, :])
loss = criterion(outputs.reshape(-1, 10), targets[:, 1:, :].argmax(dim=2).reshape(-1))
loss.backward()
optimizer.step()
```
其中,`Attention`是一个自定义的Attention模块,`Seq2Seq`是一个基于LSTM和Attention的序列模型。在训练过程中,我们使用交叉熵损失函数计算模型的损失。
阅读全文