pycharm多段阈值对图像进行二值化处理
时间: 2023-10-26 18:48:56 浏览: 100
Pycharm可以使用OpenCV库对图像进行二值化处理。对于多段阈值的情况,可以使用cv2.adaptiveThreshold()函数。
该函数有五个参数:要处理的原图像、输出的结果图像、设定阈值的方法(cv2.ADAPTIVE_THRESH_MEAN_C或cv2.ADAPTIVE_THRESH_GAUSSIAN_C)、阈值类型(cv2.THRESH_BINARY或cv2.THRESH_BINARY_INV)、块大小和像素值限制。
如果使用cv2.ADAPTIVE_THRESH_MEAN_C,函数会将每个块的阈值设置为块中所有像素值的平均值。如果使用cv2.ADAPTIVE_THRESH_GAUSSIAN_C,则使用高斯加权平均值代替均值进行计算。
示例代码:
import cv2
img = cv2.imread('image.jpg', 0) # 读取灰度图像
# 将图像进行二值化处理,使用cv2.ADAPTIVE_THRESH_MEAN_C方法,块大小为11,像素值限制为5
th1 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 5)
# 将图像进行二值化处理,使用cv2.ADAPTIVE_THRESH_GAUSSIAN_C方法,块大小为11,像素值限制为5
th2 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 5)
cv2.imshow('Original', img)
cv2.imshow('Adaptive Mean Thresholding', th1)
cv2.imshow('Adaptive Gaussian Thresholding', th2)
cv2.waitKey(0)
cv2.destroyAllWindows()
请注意,此代码仅为示例,您需要更改文件名和块大小等参数以适应您的图像。
阅读全文
相关推荐















