Error in jackknife(mammals, mse): 没有"jackknife"这个函数
时间: 2023-07-21 17:41:01 浏览: 103
Jackknife.jl:Julia中的Jackknife重采样和估计
非常抱歉,我的回答有误。R中确实没有`jackknife`函数。在这种情况下,我们可以使用`boot`包中的`boot.ci`函数来计算jackknife估计值和置信区间,并使用估计值的标准误来确定哪些点具有影响力。以下是更新的代码:
```{r}
library(MASS)
data(mammals)
library(boot)
# 定义MSE函数
mse <- function(data, indices) {
d <- data[indices, ]
lm_model <- lm(body ~ brain, data = d)
y_pred <- predict(lm_model, newdata = d)
mean((d$body - y_pred)^2)
}
# 进行bootstrap计算
set.seed(123)
boot_mse <- boot(mammals, mse, R = 1000)
# 使用jackknife估计值和置信区间
jackknife_mse <- boot(mammals, mse, R = 1000, sim = "ordinary", ran.gen = jackknife, mle = FALSE)
jackknife_estimate <- mean(jackknife_mse$t)
jackknife_se <- sqrt((length(mammals) - 1) / length(mammals) * sum((jackknife_mse$t - jackknife_estimate)^2))
jackknife_ci <- jackknife_estimate + c(-1, 1) * qt(0.025, length(mammals) - 1) * jackknife_se
# 确定影响力点
influential_points <- which(abs(jackknife_mse$t - jackknife_estimate) > 2 * jackknife_se)
# 确定斜率有影响力的点
set.seed(123)
lm_model <- lm(body ~ brain, data = mammals)
boot_slope <- boot(mammals, function(data, indices) coef(lm(data[indices, ], formula = body ~ brain))[2], R = 1000)
boot_slope_estimate <- mean(boot_slope$t)
boot_slope_se <- sd(boot_slope$t)
boot_slope_ci <- boot.ci(boot_slope, type = "bca")
influential_points_slope <- which(abs(boot_slope$t - boot_slope_estimate) > 2 * boot_slope_se)
# 比较两者的结果
all(influential_points %in% influential_points_slope)
```
这段代码将使用jackknife估计值和置信区间来确定哪些点具有影响力,并使用bootstrap斜率方法来确定斜率有影响力的点。最后,我们可以将两者的结果进行比较,如果返回`TRUE`,则表示两种方法的结果具有一致性。
阅读全文