给出python编程实现以下内容的代码:利用数据挖掘技术,对银行已有数据进行分析,对客户进行识别,对客户是否能够进行存款精准营销。根据相关的信息预测通过电话推销,用户是否会在银行进行存款。数据集bank.csv,约4520条数据,17个属性值,分别是年龄,工作类型,婚姻状况,受教育背景,信用情况,房贷,个人贷款,联系电话是手机还是固定电话,最后联系月份,最后联系日,通话持续时间,本次活动中联系的次数,最后一次接触距离上一次接触的时间,以前的活动中联系的次数,上一次活动成功与否,是否会进行存款
时间: 2024-04-21 10:27:08 浏览: 143
以下是利用Python进行银行客户存款精准营销预测的代码实现:
```python
import pandas as pd
import numpy as np
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
# 读取数据集
data = pd.read_csv('bank.csv', delimiter=';')
# 数据预处理
label_encoder = preprocessing.LabelEncoder()
data['job'] = label_encoder.fit_transform(data['job'])
data['marital'] = label_encoder.fit_transform(data['marital'])
data['education'] = label_encoder.fit_transform(data['education'])
data['default'] = label_encoder.fit_transform(data['default'])
data['housing'] = label_encoder.fit_transform(data['housing'])
data['loan'] = label_encoder.fit_transform(data['loan'])
data['contact'] = label_encoder.fit_transform(data['contact'])
data['month'] = label_encoder.fit_transform(data['month'])
data['day_of_week'] = label_encoder.fit_transform(data['day_of_week'])
data['poutcome'] = label_encoder.fit_transform(data['poutcome'])
data['y'] = label_encoder.fit_transform(data['y'])
# 划分训练集和测试集
X = data.iloc[:, :-1]
y = data.iloc[:, -1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 构建决策树分类器模型并训练
clf = DecisionTreeClassifier(random_state=42)
clf.fit(X_train, y_train)
# 预测测试集
y_pred = clf.predict(X_test)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print('Accuracy:', accuracy)
```
运行以上代码,即可得到存款营销预测的准确率。通过数据挖掘技术,我们可以对客户进行识别,并预测客户是否会进行存款,从而实现精准的存款营销。
阅读全文