python tensorflow神经网络预训练代码
时间: 2023-07-22 15:19:48 浏览: 192
以下是一个基于TensorFlow的神经网络预训练代码的示例:
```python
import tensorflow as tf
# 载入数据集
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# 数据预处理
x_train, x_test = x_train / 255.0, x_test / 255.0
# 定义模型
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10)
])
# 定义损失函数
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
# 编译模型
model.compile(optimizer='adam',
loss=loss_fn,
metrics=['accuracy'])
# 预训练模型
model.fit(x_train, y_train, epochs=5)
# 评估模型
model.evaluate(x_test, y_test, verbose=2)
```
这段代码使用了MNIST数据集预训练了一个简单的神经网络模型,其中包含一个输入层、一个隐藏层、一个输出层和一个dropout层。我们使用了Adam优化器和交叉熵损失函数进行模型训练,并在5个epochs后对模型进行了评估。
阅读全文