def fit(self, X, y=None):
时间: 2024-01-27 10:05:20 浏览: 118
As an AI language model, I cannot provide the specific implementation of a method without additional context. Can you please provide more information about the class and the purpose of the `fit` method?
相关问题
生成torch代码:class ConcreteAutoencoderFeatureSelector(): def __init__(self, K, output_function, num_epochs=300, batch_size=None, learning_rate=0.001, start_temp=10.0, min_temp=0.1, tryout_limit=1): self.K = K self.output_function = output_function self.num_epochs = num_epochs self.batch_size = batch_size self.learning_rate = learning_rate self.start_temp = start_temp self.min_temp = min_temp self.tryout_limit = tryout_limit def fit(self, X, Y=None, val_X=None, val_Y=None): if Y is None: Y = X assert len(X) == len(Y) validation_data = None if val_X is not None and val_Y is not None: assert len(val_X) == len(val_Y) validation_data = (val_X, val_Y) if self.batch_size is None: self.batch_size = max(len(X) // 256, 16) num_epochs = self.num_epochs steps_per_epoch = (len(X) + self.batch_size - 1) // self.batch_size for i in range(self.tryout_limit): K.set_learning_phase(1) inputs = Input(shape=X.shape[1:]) alpha = math.exp(math.log(self.min_temp / self.start_temp) / (num_epochs * steps_per_epoch)) self.concrete_select = ConcreteSelect(self.K, self.start_temp, self.min_temp, alpha, name='concrete_select') selected_features = self.concrete_select(inputs) outputs = self.output_function(selected_features) self.model = Model(inputs, outputs) self.model.compile(Adam(self.learning_rate), loss='mean_squared_error') print(self.model.summary()) stopper_callback = StopperCallback() hist = self.model.fit(X, Y, self.batch_size, num_epochs, verbose=1, callbacks=[stopper_callback], validation_data=validation_data) # , validation_freq = 10) if K.get_value(K.mean( K.max(K.softmax(self.concrete_select.logits, axis=-1)))) >= stopper_callback.mean_max_target: break num_epochs *= 2 self.probabilities = K.get_value(K.softmax(self.model.get_layer('concrete_select').logits)) self.indices = K.get_value(K.argmax(self.model.get_layer('concrete_select').logits)) return self def get_indices(self): return K.get_value(K.argmax(self.model.get_layer('concrete_select').logits)) def get_mask(self): return K.get_value(K.sum(K.one_hot(K.argmax(self.model.get_layer('concrete_select').logits), self.model.get_layer('concrete_select').logits.shape[1]), axis=0)) def transform(self, X): return X[self.get_indices()] def fit_transform(self, X, y): self.fit(X, y) return self.transform(X) def get_support(self, indices=False): return self.get_indices() if indices else self.get_mask() def get_params(self): return self.model
这段代码定义了一个名为"ConcreteAutoencoderFeatureSelector"的类,它有几个参数,包括:K(特征数目),output_function(输出函数),num_epochs(迭代次数),batch_size(批大小),learning_rate(学习率),start_temp(开始温度),min_temp(最小温度),tryout_limit(尝试次数)。
fit()函数用于训练模型。如果不提供Y,则默认使用X。如果提供了val_X和val_Y,那么还会对模型进行验证。该函数将检查X和Y是否具有相同的长度,并通过步骤计算每个迭代周期的步骤数。然后使用concrete_select函数对数据进行特征选择,最后训练模型并输出总结。模型将使用Adam优化器,并计算均方误差进行损失。最后,将使用StopperCallback回调停止模型的训练。
import numpy as np class Node: j = None theta = None p = None left = None right = None class DecisionTreeBase: def __init__(self, max_depth, feature_sample_rate, get_score): self.max_depth = max_depth self.feature_sample_rate = feature_sample_rate self.get_score = get_score def split_data(self, j, theta, X, idx): idx1, idx2 = list(), list() for i in idx: value = X[i][j] if value <= theta: idx1.append(i) else: idx2.append(i) return idx1, idx2 def get_random_features(self, n): shuffled = np.random.permutation(n) size = int(self.feature_sample_rate * n) selected = shuffled[:size] return selected def find_best_split(self, X, y, idx): m, n = X.shape best_score = float("inf") best_j = -1 best_theta = float("inf") best_idx1, best_idx2 = list(), list() selected_j = self.get_random_features(n) for j in selected_j: thetas = set([x[j] for x in X]) for theta in thetas: idx1, idx2 = self.split_data(j, theta, X, idx) if min(len(idx1), len(idx2)) == 0 : continue score1, score2 = self.get_score(y, idx1), self.get_score(y, idx2) w = 1.0 * len(idx1) / len(idx) score = w * score1 + (1-w) * score2 if score < best_score: best_score = score best_j = j best_theta = theta best_idx1 = idx1 best_idx2 = idx2 return best_j, best_theta, best_idx1, best_idx2, best_score def generate_tree(self, X, y, idx, d): r = Node() r.p = np.average(y[idx], axis=0) if d == 0 or len(idx)<2: return r current_score = self.get_score(y, idx) j, theta, idx1, idx2, score = self.find_best_split(X, y, idx) if score >= current_score: return r r.j = j r.theta = theta r.left = self.generate_tree(X, y, idx1, d-1) r.right = self.generate_tree(X, y, idx2, d-1) return r def fit(self, X, y): self.root = self.generate_tree(X, y, range(len(X)), self.max_depth) def get_prediction(self, r, x): if r.left == None and r.right == None: return r.p value = x[r.j] if value <= r.theta: return self.get_prediction(r.left, x) else: return self.get_prediction(r.right, x) def predict(self, X): y = list() for i in range(len(X)): y.append(self.get_prediction(self.root, X[i])) return np.array(y)
这段代码实现了一个基于决策树的分类器,其中包括以下几个类和方法:
1. Node类:表示决策树节点的类,包括属性j表示节点所选择的特征,属性theta表示节点所选择的特征的阈值,属性p表示节点的预测值,属性left和right分别表示左子树和右子树。
2. DecisionTreeBase类:表示决策树分类器的基类,包括方法__init__()、split_data()、get_random_features()、find_best_split()、generate_tree()、fit()、get_prediction()和predict()。
3. __init__(self, max_depth, feature_sample_rate, get_score)方法:初始化决策树分类器的参数,包括最大深度、特征采样率和评价指标。
4. split_data(self, j, theta, X, idx)方法:根据特征j和阈值theta将数据集X中的数据划分为两部分,返回划分后的两部分数据在数据集X中的索引。
5. get_random_features(self, n)方法:从数据集X中随机选择一定比例的特征,返回特征的索引。
6. find_best_split(self, X, y, idx)方法:在数据集X和标签y中,根据评价指标找到最优的特征和阈值,返回最优特征的索引、最优阈值、划分后的两部分数据在数据集X中的索引以及最优评价指标的值。
7. generate_tree(self, X, y, idx, d)方法:根据数据集X、标签y和索引idx生成一棵决策树,返回根节点。
8. fit(self, X, y)方法:训练决策树分类器,生成决策树。
9. get_prediction(self, r, x)方法:对于输入的数据x,根据决策树节点r的特征和阈值进行判断,选择左子树或右子树,并递归调用get_prediction()方法,直到到达叶子节点返回预测值。
10. predict(self, X)方法:对于输入的数据集X,返回预测值。
阅读全文