def drop_path(x, drop_prob: float = 0., training: bool = False): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0. or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output 详细讲解一下
时间: 2023-06-06 11:04:51 浏览: 162
这是一个函数,用于在残差块的主路径上每个样本中丢弃路径(随机深度)。如果在EfficientNet等网络中使用,则与我创建的DropConnect实现相同,但原始名称会导致误解,因为“Drop Connect”是另一篇论文中不同形式的丢失连接。详见讨论:https://github.com/tensorflow/tpu/issues/494. 其中,x为输入的张量,drop_prob为float类型,表示丢弃概率,默认值为0,training为布尔类型,表示是否训练,默认为False。
相关问题
def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0. or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = x.new_empty(shape).bernoulli_(keep_prob) if keep_prob > 0.0 and scale_by_keep: random_tensor.div_(keep_prob) return x * random_tensor
这段代码是一个用于实现Stochastic Depth(随机深度)的函数。Stochastic Depth是一种在残差网络主路径中应用的路径丢弃技术。
函数的输入参数包括:
- `x`:输入张量。
- `drop_prob`:丢弃概率,用于控制丢弃的路径比例。
- `training`:是否处于训练模式,用于控制是否应用路径丢弃。
- `scale_by_keep`:是否根据保留概率进行缩放。
函数的返回值是经过路径丢弃处理后的张量。
具体实现中,首先判断`drop_prob`是否为0或者是否处于非训练模式,如果是,则直接返回输入张量`x`,不进行路径丢弃操作。
然后,计算保留概率`keep_prob`,即1减去丢弃概率`drop_prob`。
接着,根据输入张量`x`的形状创建一个与其相同形状的随机张量`random_tensor`,其中的元素服从伯努利分布,并且取值为1的概率为保留概率`keep_prob`。
如果保留概率大于0且`scale_by_keep`为True,则对随机张量进行缩放,将其除以保留概率`keep_prob`。
最后,将输入张量`x`与随机张量`random_tensor`相乘,得到经过路径丢弃处理后的张量,并返回。
总的来说,这段代码实现了Stochastic Depth中的路径丢弃操作,可以根据丢弃概率在训练过程中随机丢弃一部分路径,从而增强模型的鲁棒性和泛化能力。
def add_noise(img, noise_type='s&p', SNR=0.1, prob=0.5): """ img: PIL.Image,输入的图像 noise_type: str,噪声类型,可选的有:'gaussian', 'poisson', 's&p',默认为's&p' SNR: float,信噪比,取值范围为[0, 1],默认为0.1 prob: float,噪声添加的概率,取值范围为[0, 1],默认为0.5 """ img = np.array(img) h, w, c = img.shape # 生成噪声 if noise_type == 'gaussian': noise = np.random.normal(0, 1, (h, w, c)) * 255 * (1 - SNR) elif noise_type == 'poisson': noise = np.random.poisson(255 * (1 - SNR), (h, w, c)) / (255 * (1 - SNR)) elif noise_type == 's&p': noise = np.zeros((h, w, c)) # 添加椒盐噪声 for i in range(h): for j in range(w): rand = random.random() if rand < prob: noise[i, j, :] = 0 elif rand > 1 - prob: noise[i, j, :] = 255 else: noise[i, j, :] = img[i, j, :] # 将图像和噪声相加 img_noise = img + noise img_noise = np.clip(img_noise, 0, 255).astype(np.uint8) img_noise = Image.fromarray(img_noise) return img_noise
这段代码实现了在给定的图像上添加噪声的功能。其中,噪声类型可以选择高斯噪声、泊松噪声和椒盐噪声。信噪比(SNR)是一个衡量信号质量的指标,它表示信号与噪声的比值。prob参数是椒盐噪声的概率,在0到1之间取值,它表示在每个像素点上添加椒盐噪声的概率。
具体实现上,这段代码首先将输入的PIL图像转换为numpy数组,然后根据噪声类型和信噪比生成对应的噪声。对于椒盐噪声,它在每个像素点上根据概率随机选择是否添加椒盐噪声。最后,将图像和噪声相加,并使用np.clip函数将像素值限制在0到255之间,最后再将numpy数组转换回PIL图像并返回。
阅读全文