为每一行加注释
时间: 2023-09-15 07:22:25 浏览: 77
所有表注释
好的,下面是注释版的示例代码:
```
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
# 定义模型
class TransferModel(nn.Module):
def __init__(self, num_classes):
super(TransferModel, self).__init__()
# 使用预训练的ResNet-18模型
self.resnet = torchvision.models.resnet18(pretrained=True)
# 将ResNet-18的最后一层全连接层替换为一个新的全连接层
self.resnet.fc = nn.Linear(512, num_classes)
def forward(self, x):
# 前向传播
output = self.resnet(x)
return output
# 数据预处理
transform_train = transforms.Compose([
# 随机裁剪和大小变换
transforms.RandomResizedCrop(224),
# 随机水平翻转
transforms.RandomHorizontalFlip(),
# 将数据转换为tensor类型
transforms.ToTensor(),
# 归一化
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
transform_test = transforms.Compose([
# 将图像大小调整为256x256
transforms.Resize(256),
# 中心裁剪为224x224
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
# 加载数据集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform_train)
trainloader = DataLoader(trainset, batch_size=32, shuffle=True, num_workers=4)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform_test)
testloader = DataLoader(testset, batch_size=32, shuffle=False, num_workers=4)
# 定义模型和损失函数
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
num_classes = 10
model = TransferModel(num_classes).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# 将输入数据和标签转移到指定设备上
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
# 清空优化器的梯度信息
optimizer.zero_grad()
# 计算输出和损失
outputs = model(inputs)
loss = criterion(outputs, labels)
# 反向传播和优化
loss.backward()
optimizer.step()
# 计算平均损失
running_loss += loss.item()
if i % 200 == 199:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 200))
running_loss = 0.0
print('Finished Training')
# 评估模型
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
# 将输入数据和标签转移到指定设备上
images, labels = data
images, labels = images.to(device), labels.to(device)
# 计算模型的输出
outputs = model(images)
# 找到每个输出向量中的最大值,并返回其所在的索引,即预测的类别
_, predicted = torch.max(outputs.data, 1)
# 计算正确预测的样本数和总样本数
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the test images: %d %%' % (
100 * correct / total))
```
希望这样更容易理解些。
阅读全文