Springboot中如何对一个[{itemid:1,rating:0.9},{itemid:2,rating:0.8},{itemid:3,rating:0.5}]数组中的rating进行排序,并保留前rating值最大的10个其中rating是BigDecimal类型

时间: 2023-11-27 17:53:40 浏览: 48
可以使用Java 8的流式API和Comparator对数组进行排序并保留前10个。 首先,将数组转换为流,然后使用sorted方法对流进行排序,使用reversed方法将排序顺序反转(从高到低),最后使用limit方法保留前10个元素。代码示例如下: ``` Arrays.stream(array) .sorted(Comparator.comparing(item -> item.getRating()).reversed()) .limit(10) .forEach(item -> System.out.println(item)); ``` 其中,`array`是包含`{itemid:1,rating:0.9},{itemid:2,rating:0.8},{itemid:3,rating:0.5}`的数组,`item.getRating()`是获取rating属性的方法。 这段代码将按照rating值从高到低排序,并输出前10个元素。你可以将System.out.println(item)替换为其他操作,比如将排序后的结果存储到另一个数组中。
相关问题

Springboot中如何对一个[{itemid:1,rating:0.9},{itemid:2,rating:0.8},{itemid:3,rating:0.5}]数组中的rating进行排序

你可以使用Java 8的Stream API对数组中的rating进行排序,具体代码如下: ```java List<Map<String, Double>> itemList = new ArrayList<>(); itemList.add(new HashMap<String, Double>() {{ put("itemid", 1.0); put("rating", 0.9); }}); itemList.add(new HashMap<String, Double>() {{ put("itemid", 2.0); put("rating", 0.8); }}); itemList.add(new HashMap<String, Double>() {{ put("itemid", 3.0); put("rating", 0.5); }}); List<Map<String, Double>> sortedItemList = itemList.stream() .sorted(Comparator.comparingDouble(item -> -item.get("rating"))) .collect(Collectors.toList()); System.out.println(sortedItemList); ``` 输出结果为: ``` [{itemid=1.0, rating=0.9}, {itemid=2.0, rating=0.8}, {itemid=3.0, rating=0.5}] ``` 其中,`Comparator.comparingDouble(item -> -item.get("rating"))`表示按照rating降序排序,`-item.get("rating")`表示取负数是为了让rating降序排列。

用pythorch对数据集ml-100k深度学习实现推荐系统代码

以下是使用PyTorch实现推荐系统的代码,使用的是MovieLens 100k数据集。 首先需要导入必要的包: ```python import pandas as pd import numpy as np import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader ``` 接下来读取数据集并进行预处理: ```python # 读取数据集 data = pd.read_csv('ml-100k/u.data', sep='\t', header=None, names=['userId', 'itemId', 'rating', 'timestamp']) # 将数据集按照80:10:10的比例分成训练集、验证集、测试集 train_data = data[:int(len(data)*0.8)] val_data = data[int(len(data)*0.8):int(len(data)*0.9)] test_data = data[int(len(data)*0.9):] # 获取用户数量和电影数量 num_users = len(data['userId'].unique()) num_items = len(data['itemId'].unique()) # 定义数据集类 class MovieLensDataset(Dataset): def __init__(self, data): self.data = data def __len__(self): return len(self.data) def __getitem__(self, index): user = self.data.iloc[index]['userId'] item = self.data.iloc[index]['itemId'] rating = self.data.iloc[index]['rating'] return {'user': user, 'item': item, 'rating': rating} # 定义训练集、验证集、测试集的数据集实例 train_dataset = MovieLensDataset(train_data) val_dataset = MovieLensDataset(val_data) test_dataset = MovieLensDataset(test_data) # 定义数据集加载器 train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=64, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=64, shuffle=True) ``` 接下来定义模型: ```python class RecommenderNet(nn.Module): def __init__(self, num_users, num_items, emb_size=64, hidden_size=128): super(RecommenderNet, self).__init__() self.user_emb = nn.Embedding(num_users, emb_size) self.item_emb = nn.Embedding(num_items, emb_size) self.fc1 = nn.Linear(emb_size*2, hidden_size) self.fc2 = nn.Linear(hidden_size, 1) self.relu = nn.ReLU() self.dropout = nn.Dropout(0.2) def forward(self, user, item): user_emb = self.user_emb(user) item_emb = self.item_emb(item) x = torch.cat((user_emb, item_emb), dim=1) x = self.fc1(x) x = self.relu(x) x = self.dropout(x) x = self.fc2(x) return x ``` 然后定义训练函数和验证函数: ```python def train(model, train_loader, criterion, optimizer, device): model.train() train_loss = 0.0 for batch in train_loader: user = batch['user'].to(device) item = batch['item'].to(device) rating = batch['rating'].to(device) optimizer.zero_grad() output = model(user, item) loss = criterion(output, rating.float()) loss.backward() optimizer.step() train_loss += loss.item() return train_loss/len(train_loader) def validate(model, val_loader, criterion, device): model.eval() val_loss = 0.0 with torch.no_grad(): for batch in val_loader: user = batch['user'].to(device) item = batch['item'].to(device) rating = batch['rating'].to(device) output = model(user, item) loss = criterion(output, rating.float()) val_loss += loss.item() return val_loss/len(val_loader) ``` 最后进行训练和测试: ```python # 定义模型、损失函数和优化器 model = RecommenderNet(num_users, num_items) criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 将模型放到GPU上 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) # 训练模型 for epoch in range(10): train_loss = train(model, train_loader, criterion, optimizer, device) val_loss = validate(model, val_loader, criterion, device) print(f'Epoch {epoch+1}, train loss: {train_loss:.4f}, val loss: {val_loss:.4f}') # 测试模型 test_loss = validate(model, test_loader, criterion, device) print(f'Test loss: {test_loss:.4f}') ``` 注意:以上代码仅供参考,实际应用中还需要进行更多的调参和优化。
阅读全文

相关推荐

大家在看

recommend-type

基于CDMA-TDOA的室内超声波定位系统 (2012年)

针对国内外对室内定位技术中定位精度不高问题,提出一种基于CDMA( Code Division Multiple Access) - TDOA( Time Difference of Arrival)的室内超声波定位系统,并给出实时性差异等缺点,进行了其工作原理和超声波信号的分析。该系统基于射频和超声波传感器的固有性质,对超声波信号采用CDMA技术进行编码,以便在目标节点上能区分各个信标发来的超声波信号,并结合射频信号实现TDOA测距算法,最终实现三维定位。采用Matlab/Simulink模块对3个信标
recommend-type

如何降低开关电源纹波噪声

1、什么是纹波? 2、纹波的表示方法 3、纹波的测试 4、纹波噪声的抑制方法
recommend-type

西安石油大学2019-2023 计算机考研808数据结构真题卷

西安石油大学2019-2023 计算机考研808数据结构真题卷,希望能够帮助到大家
recommend-type

AWS(亚马逊)云解决方案架构师面试三面作业全英文作业PPT

笔者参加亚马逊面试三面的作业,希望大家参考,少走弯路。
recommend-type

python大作业基于python实现的心电检测源码+数据+详细注释.zip

python大作业基于python实现的心电检测源码+数据+详细注释.zip 【1】项目代码完整且功能都验证ok,确保稳定可靠运行后才上传。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通,帮助解答。 【2】项目主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 【3】项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 【4】如果基础还行,或热爱钻研,可基于此项目进行二次开发,DIY其他不同功能,欢迎交流学习。 【备注】 项目下载解压后,项目名字和项目路径不要用中文,否则可能会出现解析不了的错误,建议解压重命名为英文名字后再运行!有问题私信沟通,祝顺利! python大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zip python大作业基于python实现的心电检测源码+数据+详细注释.zip

最新推荐

recommend-type

zip4j.jar包下载,版本为 2.11.5

zip4j.jar包下载,版本为 2.11.5
recommend-type

基于node.js完成登录

基于node.js完成登录
recommend-type

aapt_v0.2-eng.ibotpeaches.20151011.225425_win.tar.cab

aapt_v0.2-eng.ibotpeaches.20151011.225425_win.tar.cab
recommend-type

(2368806)CCNA中文版PPT

**CCNA(思科认证网络助理工程师)是网络技术领域中的一个基础认证,它涵盖了网络基础知识、IP编址、路由与交换技术等多个方面。以下是对CCNA中文版PPT中可能涉及的知识点的详细说明:** ### 第1章 高级IP编址 #### 1.1 IPv4地址结构 - IPv4地址由32位二进制组成,通常分为四段,每段8位,用点分十进制表示。 - 子网掩码用于定义网络部分和主机部分,如255.255.255.0。 - IP地址的分类:A类、B类、C类、D类(多播)和E类(保留)。 #### 1.2 子网划分 - 子网划分用于优化IP地址的分配,通过借用主机位创建更多的子网。 - 子网计算涉及掩码位数选择,以及如何确定可用的主机数和子网数。 - CIDR(无类别域间路由)表示法用于更有效地管理IP地址空间。 #### 1.3 私有IP地址 - 为了节省公网IP地址,私有IP地址被用于内部网络,如10.0.0.0/8,172.16.0.0/12,192.168.0.0/16。 #### 1.4 广播地址 - 每个网络都有一个特定的广播地址,所有数据包都会发送到这个地址以达到同一网络内的所有设备。
recommend-type

三相电流型PWM整流matlab仿真,采用电压外环和电流内环的双闭环控制策略,附赠自己整理的说明文档和几篇参考文献

三相电流型PWM整流matlab仿真,采用电压外环和电流内环的双闭环控制策略,附赠自己整理的说明文档和几篇参考文献。
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"