费诺编码matlab代码
时间: 2023-07-09 10:41:06 浏览: 177
以下是一个简单的 MATLAB 实现费诺编码的代码:
```matlab
function [codebook, avglen] = huffman(p)
% HUFFMAN Huffman codebook for a given probability mass function.
% Given a probability mass function p, return a Huffman codebook.
% The codebook is represented as a cell array of strings, where
% codebook{i} is the binary codeword for the symbol with probability
% p(i). Also return the average codeword length.
n = length(p);
codebook = cell(n, 1);
avglen = 0;
% Initialize the heap with the symbols and their probabilities.
heap = cell(n, 1);
for i = 1:n
heap{i} = {p(i), i};
end
% Build the Huffman tree.
for k = 1:n-1
% Extract the two symbols with smallest probabilities.
[p1, i1] = extractMin(heap);
[p2, i2] = extractMin(heap);
% Combine the symbols and their probabilities.
pnew = p1 + p2;
inew = {pnew, i1, i2};
% Insert the new symbol back into the heap.
heap{k+n} = inew;
% Update the tree by adding new edges.
if k == 1
% The first iteration.
tree = inew;
else
% Find the leaf nodes that correspond to the two symbols.
[u, v] = findNodes(tree, i1, i2);
% Add new edges to the tree.
tree = addEdge(tree, u, k+n);
tree = addEdge(tree, v, k+n);
end
end
% Generate the codebook by traversing the tree.
for i = 1:n
% Traverse the tree from the root to the leaf node.
code = '';
node = i;
while node ~= n+k
[u, v] = findNodes(tree, node, 0);
if u == 0
code = ['0' code];
node = v;
else
code = ['1' code];
node = u;
end
end
codebook{i} = code;
avglen = avglen + p(i) * length(code);
end
end
function [p, i] = extractMin(heap)
% Extract the symbol with smallest probability from the heap.
n = length(heap);
p = heap{1}{1};
i = heap{1}{2};
% Replace the root with the last leaf node and sift down.
heap{1} = heap{n};
heap = heap(1:n-1);
n = n - 1;
k = 1;
while 2*k <= n
j = 2*k;
if j < n && heap{j}{1} > heap{j+1}{1}
j = j + 1;
end
if heap{k}{1} > heap{j}{1}
tmp = heap{k};
heap{k} = heap{j};
heap{j} = tmp;
k = j;
else
break;
end
end
end
function [u, v] = findNodes(tree, i, j)
% Find the leaf nodes in the subtree rooted at i and j.
u = 0;
v = 0;
n = length(tree);
for k = 1:n
node = tree{k};
if node{2} == i
u = k;
end
if node{2} == j
v = k;
end
if u > 0 && v > 0
break;
end
end
end
function tree = addEdge(tree, u, v)
% Add a new edge to the Huffman tree.
n = length(tree);
node = {0, 0, 0};
node{1} = tree{u}{1} + tree{v}{1};
node{2} = u;
node{3} = v;
tree{end+1} = node;
end
```
在这个实现中,我们使用一个小根堆来维护符号的概率。我们首先将每个符号及其概率插入堆中,然后不断从堆中取出概率最小的两个符号,将它们合并成一个新符号,然后将新符号插入堆中。在这个过程中,我们还维护了一个 Huffman 树,用于生成编码。最后,我们从根节点开始遍历 Huffman 树,生成每个符号的编码。
阅读全文