mopso算法代码程序_没有之一,我见过的最漂亮代码!!
时间: 2024-03-24 16:39:43 浏览: 136
非常美观的源代码
4星 · 用户满意度95%
以下是一个基于Python的MOPSO算法代码程序,供您参考:
```python
import random
import math
class Particle:
def __init__(self, num_dimensions):
self.num_dimensions = num_dimensions
self.position = [random.uniform(0, 1) for _ in range(num_dimensions)]
self.velocity = [random.uniform(0, 1) for _ in range(num_dimensions)]
self.best_position = list(self.position)
self.best_fitness = float('inf')
self.fitness = float('inf')
self.crowding_distance = 0
def update_velocity(self, global_best_position, inertia_weight, cognitive_weight, social_weight):
for i in range(self.num_dimensions):
r1 = random.uniform(0, 1)
r2 = random.uniform(0, 1)
cognitive_component = cognitive_weight * r1 * (self.best_position[i] - self.position[i])
social_component = social_weight * r2 * (global_best_position[i] - self.position[i])
self.velocity[i] = inertia_weight * self.velocity[i] + cognitive_component + social_component
def update_position(self, bounds):
for i in range(self.num_dimensions):
self.position[i] += self.velocity[i]
if self.position[i] > bounds[i][1]:
self.position[i] = bounds[i][1]
self.velocity[i] = 0
elif self.position[i] < bounds[i][0]:
self.position[i] = bounds[i][0]
self.velocity[i] = 0
def evaluate_fitness(self, objective_function):
self.fitness = objective_function(self.position)
if self.fitness < self.best_fitness:
self.best_fitness = self.fitness
self.best_position = list(self.position)
class MOPSO:
def __init__(self, objective_function, num_particles, num_iterations, num_dimensions, bounds, inertia_weight, cognitive_weight, social_weight):
self.objective_function = objective_function
self.num_particles = num_particles
self.num_iterations = num_iterations
self.num_dimensions = num_dimensions
self.bounds = bounds
self.inertia_weight = inertia_weight
self.cognitive_weight = cognitive_weight
self.social_weight = social_weight
self.global_best_position = [random.uniform(bounds[i][0], bounds[i][1]) for i in range(num_dimensions)]
self.global_best_fitness = float('inf')
self.particles = [Particle(num_dimensions) for _ in range(num_particles)]
def run(self):
for i in range(self.num_iterations):
for particle in self.particles:
particle.update_velocity(self.global_best_position, self.inertia_weight, self.cognitive_weight, self.social_weight)
particle.update_position(self.bounds)
particle.evaluate_fitness(self.objective_function)
if particle.fitness < self.global_best_fitness:
self.global_best_fitness = particle.fitness
self.global_best_position = list(particle.position)
fronts = self.fast_non_dominated_sort(self.particles)
for i, front in enumerate(fronts):
self.calculate_crowding_distance(front)
self.particles.sort(key=lambda particle: particle.crowding_distance, reverse=True)
self.particles = self.particles[:self.num_particles]
if len(self.particles) == self.num_particles:
break
return self.global_best_position, self.global_best_fitness
def fast_non_dominated_sort(self, particles):
fronts = []
remaining_particles = list(particles)
while len(remaining_particles) > 0:
front = []
for particle in remaining_particles:
particle.domination_count = 0
particle.dominated_particles = []
for other_particle in remaining_particles:
if particle == other_particle:
continue
if self.dominates(particle, other_particle):
particle.dominated_particles.append(other_particle)
elif self.dominates(other_particle, particle):
particle.domination_count += 1
if particle.domination_count == 0:
front.append(particle)
fronts.append(front)
for particle in front:
remaining_particles.remove(particle)
return fronts
def dominates(self, particle1, particle2):
for i in range(self.num_dimensions):
if particle1.fitness[i] > particle2.fitness[i]:
return False
return True
def calculate_crowding_distance(self, particles):
num_particles = len(particles)
for particle in particles:
particle.crowding_distance = 0
for i in range(self.num_dimensions):
particles.sort(key=lambda particle: particle.fitness[i])
particles[0].crowding_distance = float('inf')
particles[num_particles - 1].crowding_distance = float('inf')
fitness_range = particles[num_particles - 1].fitness[i] - particles[0].fitness[i]
for j in range(1, num_particles - 1):
distance = particles[j + 1].fitness[i] - particles[j - 1].fitness[i]
particles[j].crowding_distance += distance / fitness_range
```
这段程序是一个基于Python的MOPSO算法实现,包括一个粒子类和一个MOPSO类。程序实现了多目标优化问题的求解,其中使用了快速非支配排序和拥挤距离计算等技术。
阅读全文