class VoxelsSumming(torch.autograd.Function): """Adapted from https://github.com/nv-tlabs/lift-splat-shoot/blob/master/src/tools.py#L193""" @staticmethod def forward(ctx, x, geometry, ranks): """The features x and geometry are ranked by voxel positions.""" # Cumulative sum of all features. x = x.cumsum(0) # Indicates the change of voxel. mask = torch.ones(x.shape[0], device=x.device, dtype=torch.bool) mask[:-1] = ranks[1:] != ranks[:-1] x, geometry = x[mask], geometry[mask] # Calculate sum of features within a voxel. x = torch.cat((x[:1], x[1:] - x[:-1])) ctx.save_for_backward(mask) ctx.mark_non_differentiable(geometry) return x, geometry @staticmethod def backward(ctx, grad_x, grad_geometry): (mask,) = ctx.saved_tensors # Since the operation is summing, we simply need to send gradient # to all elements that were part of the summation process. indices = torch.cumsum(mask, 0) indices[mask] -= 1 output_grad = grad_x[indices] return output_grad, None, None这段代码中有判断是否是同一体素的语句吗?
时间: 2024-03-31 08:33:25 浏览: 55
是的,这段代码中有判断是否是同一体素的语句。具体来说,在前向传递中,第12行的语句`mask[:-1] = ranks[1:] != ranks[:-1]`用于创建一个掩码`mask`,以指示哪些张量属于同一体素。这个掩码的长度为张量列表中所有张量的数量。`mask`中的每个元素对应于张量列表中的一个张量,如果该张量与前一个张量不属于同一体素,则该元素为True,否则为False。在接下来的代码中,使用这个掩码来提取属于同一体素的张量,然后计算每个体素中所有特征值的总和。
相关问题
VoxelsSumming(torch.autograd.Function): """Adapted from https://github.com/nv-tlabs/lift-splat-shoot/blob/master/src/tools.py#L193"""这个方法我还是不理解
这段代码是一个自定义的 PyTorch 的 autograd.Function,用于在神经网络中进行 VoxelsSumming 操作。VoxelsSumming 是一种将多个体素(Voxels)进行加和的操作,通常用于三维图像处理中。这个函数的具体实现可以参考 https://github.com/nv-tlabs/lift-splat-shoot/blob/master/src/tools.py#L193。
在 PyTorch 中,autograd.Function 是一种自定义的 autograd 操作,可以实现自定义的前向传播和反向传播操作。在这个例子中,VoxelsSumming 函数的前向传播是将多个体素进行加和,反向传播则是计算输入张量的梯度。这种自定义的 autograd.Function 可以被包含在神经网络中,从而实现特定的操作。
class VoxelsSumming(torch.autograd.Function): """Adapted from https://github.com/nv-tlabs/lift-splat-shoot/blob/master/src/tools.py#L193""" @staticmethod def forward(ctx,中的ctx是什么意思?
在 PyTorch 中,每个自定义的函数(如此处的 VoxelsSumming)都需要继承自 `torch.autograd.Function`,并实现其中的两个方法:`forward` 和 `backward`。这些方法的作用是定义前向传播和反向传播的计算方法,以便在神经网络中使用。
在 `forward` 方法中,`ctx` 是一个上下文对象(context),用于保存一些中间变量,以备反向传播使用。具体来说,`ctx` 是一个可以存储任意对象的 Python 对象,可以通过 `ctx.save_for_backward()` 方法将需要在反向传播中使用的张量保存到 `ctx` 中,然后在 `backward` 方法中使用。
因此,在 VoxelsSumming 中,`ctx` 就是一个上下文对象,用于保存一些中间变量,以备反向传播使用。
阅读全文