知道了双目摄像头的内参和外参,用PYTHON编写畸变校正的代码
时间: 2024-05-05 21:17:41 浏览: 144
以下是PYTHON代码实现双目摄像头畸变校正的过程:
1. 导入必要的包和库:
```python
import cv2
import numpy as np
```
2. 定义内参和外参:
```python
# 左右摄像头的内参和外参
left_intrinsic = np.array([[fx_left, 0, cx_left], [0, fy_left, cy_left], [0, 0, 1]])
left_distortion = np.array([k1_left, k2_left, p1_left, p2_left, k3_left])
left_rotation = np.array([[r11_left, r12_left, r13_left], [r21_left, r22_left, r23_left], [r31_left, r32_left, r33_left]])
left_translation = np.array([t1_left, t2_left, t3_left])
right_intrinsic = np.array([[fx_right, 0, cx_right], [0, fy_right, cy_right], [0, 0, 1]])
right_distortion = np.array([k1_right, k2_right, p1_right, p2_right, k3_right])
right_rotation = np.array([[r11_right, r12_right, r13_right], [r21_right, r22_right, r23_right], [r31_right, r32_right, r33_right]])
right_translation = np.array([t1_right, t2_right, t3_right])
```
3. 读取图像和标定参数:
```python
# 读取左右摄像头的图像
left = cv2.imread('left.jpg')
right = cv2.imread('right.jpg')
# 读取双目摄像头的内参和外参
left_intrinsic = np.loadtxt('left_intrinsic.txt')
left_distortion = np.loadtxt('left_distortion.txt')
left_rotation = np.loadtxt('left_rotation.txt')
left_translation = np.loadtxt('left_translation.txt')
right_intrinsic = np.loadtxt('right_intrinsic.txt')
right_distortion = np.loadtxt('right_distortion.txt')
right_rotation = np.loadtxt('right_rotation.txt')
right_translation = np.loadtxt('right_translation.txt')
```
4. 进行畸变校正:
```python
# 畸变校正
left_rectification, right_rectification, left_projection, right_projection, Q, roi_left, roi_right = cv2.stereoRectify(left_intrinsic, left_distortion, right_intrinsic, right_distortion, (640, 480), left_rotation, left_translation, right_rotation, right_translation, alpha=0)
# 生成映射矩阵
left_map1, left_map2 = cv2.initUndistortRectifyMap(left_intrinsic, left_distortion, left_rectification, left_projection, (640, 480), cv2.CV_16SC2)
right_map1, right_map2 = cv2.initUndistortRectifyMap(right_intrinsic, right_distortion, right_rectification, right_projection, (640, 480), cv2.CV_16SC2)
# 根据映射矩阵进行畸变校正
left_rectified = cv2.remap(left, left_map1, left_map2, cv2.INTER_LINEAR)
right_rectified = cv2.remap(right, right_map1, right_map2, cv2.INTER_LINEAR)
```
5. 对畸变校正后的图像进行显示:
```python
# 显示畸变校正后的图像
cv2.imshow("left_rectified", left_rectified)
cv2.imshow("right_rectified", right_rectified)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
完整代码如下:
```python
import cv2
import numpy as np
# 左右摄像头的内参和外参
left_intrinsic = np.array([[fx_left, 0, cx_left], [0, fy_left, cy_left], [0, 0, 1]])
left_distortion = np.array([k1_left, k2_left, p1_left, p2_left, k3_left])
left_rotation = np.array([[r11_left, r12_left, r13_left], [r21_left, r22_left, r23_left], [r31_left, r32_left, r33_left]])
left_translation = np.array([t1_left, t2_left, t3_left])
right_intrinsic = np.array([[fx_right, 0, cx_right], [0, fy_right, cy_right], [0, 0, 1]])
right_distortion = np.array([k1_right, k2_right, p1_right, p2_right, k3_right])
right_rotation = np.array([[r11_right, r12_right, r13_right], [r21_right, r22_right, r23_right], [r31_right, r32_right, r33_right]])
right_translation = np.array([t1_right, t2_right, t3_right])
# 读取左右摄像头的图像
left = cv2.imread('left.jpg')
right = cv2.imread('right.jpg')
# 畸变校正
left_rectification, right_rectification, left_projection, right_projection, Q, roi_left, roi_right = cv2.stereoRectify(left_intrinsic, left_distortion, right_intrinsic, right_distortion, (640, 480), left_rotation, left_translation, right_rotation, right_translation, alpha=0)
# 生成映射矩阵
left_map1, left_map2 = cv2.initUndistortRectifyMap(left_intrinsic, left_distortion, left_rectification, left_projection, (640, 480), cv2.CV_16SC2)
right_map1, right_map2 = cv2.initUndistortRectifyMap(right_intrinsic, right_distortion, right_rectification, right_projection, (640, 480), cv2.CV_16SC2)
# 根据映射矩阵进行畸变校正
left_rectified = cv2.remap(left, left_map1, left_map2, cv2.INTER_LINEAR)
right_rectified = cv2.remap(right, right_map1, right_map2, cv2.INTER_LINEAR)
# 显示畸变校正后的图像
cv2.imshow("left_rectified", left_rectified)
cv2.imshow("right_rectified", right_rectified)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
阅读全文