AIS数据聚类并展示到世界地图上的python代码

时间: 2023-06-11 18:07:14 浏览: 40
以下是一个简单的Python代码示例,可以使用KMeans算法对AIS数据进行聚类,并将结果可视化到世界地图上: ```python import pandas as pd import numpy as np import folium from sklearn.cluster import KMeans # 读取AIS数据(例如从CSV文件中读取) ais_data = pd.read_csv('ais_data.csv') # 准备数据 - 提取需要聚类的数据列 X = ais_data[['latitude', 'longitude']].values # 使用KMeans算法进行聚类 kmeans = KMeans(n_clusters=5).fit(X) # 将聚类结果添加到原始数据帧中 ais_data['cluster'] = kmeans.labels_ # 创建地图并添加标记 world_map = folium.Map(location=[0, 0], zoom_start=2) colors = ['red', 'green', 'blue', 'purple', 'orange'] for i, row in ais_data.iterrows(): folium.CircleMarker( location=[row['latitude'], row['longitude']], radius=5, color=colors[row['cluster']], fill=True, fill_color=colors[row['cluster']] ).add_to(world_map) # 显示地图 world_map ``` 在上面的代码中,我们首先使用Pandas从CSV文件中读取AIS数据。然后,我们从数据中提取需要聚类的列,并使用`sklearn`库中的KMeans算法进行聚类。 接下来,我们将聚类结果添加回到原始数据帧中,并使用`folium`库创建一个世界地图。最后,我们遍历每个数据点,并根据其所属的聚类将其添加到地图中。 注意,这只是一个简单的示例,实际上,您需要对数据进行更多的预处理和清理,以及对KMeans算法进行更多的调整和优化。

相关推荐

以下是一个基于Python的AIS数据集轨迹聚类代码示例: python import pandas as pd from sklearn.cluster import DBSCAN from geopy.distance import great_circle from shapely.geometry import MultiPoint # 读取AIS数据集 ais_data = pd.read_csv('ais_data.csv') # 将经纬度数据转换为点 coords = ais_data[['latitude', 'longitude']].values points = [tuple(x) for x in coords] # 计算聚类半径 kms_per_radian = 6371.0088 epsilon = 0.5 / kms_per_radian # 使用DBSCAN算法进行聚类 db = DBSCAN(eps=epsilon, min_samples=3, algorithm='ball_tree', metric='haversine').fit(np.radians(points)) cluster_labels = db.labels_ # 将聚类结果添加到数据集中 ais_data['cluster'] = cluster_labels # 获取每个簇的中心点 cluster_centers = pd.DataFrame(columns=['latitude', 'longitude']) for cluster in set(cluster_labels): if cluster == -1: continue # 获取簇中所有点的经纬度坐标 cluster_points = coords[cluster_labels == cluster] # 计算这些点的中心点 centermost_point = MultiPoint(cluster_points).centroid # 添加中心点到cluster_centers cluster_centers.loc[cluster] = [centermost_point.x, centermost_point.y] # 将聚类结果写入文件 ais_data.to_csv('ais_data_clustered.csv', index=False) cluster_centers.to_csv('ais_data_cluster_centers.csv', index=False) 这个代码使用了DBSCAN算法对AIS数据集中的轨迹进行聚类,并将聚类结果写入文件。聚类半径通过计算每个点之间的距离来确定,聚类结果使用簇的中心点表示。
### 回答1: AIS(Automatic Identification System)是一种基于无线电技术的自动识别系统,常用于航海领域的船舶定位和通信。使用Python进行AIS数据的可视化是一种常见且有效的方式。 要进行AIS数据的可视化,首先需要获取AIS数据。可以通过相关的API或者数据库来获得实时或历史AIS数据。在Python中,可以使用合适的库(如pandas)来处理和读取数据。 一旦获得AIS数据,接下来可以使用各种Python的可视化库,如matplotlib和seaborn,来创建图表和图形。下面是一些常用的AIS数据可视化方法: 1. 船舶位置可视化:使用地图库如basemap或者folium,可以将AIS数据中的船舶位置点绘制在地图上,以显示船舶在海洋中的实时位置。 2. 航线可视化:通过将船舶的历史位置点用线条连接起来,可以绘制出船舶的航线轨迹。这可以帮助分析船舶的移动模式和航线选择。 3. 船舶状态可视化:AIS数据中通常包含了船舶的速度、航向等信息。可以使用柱形图、折线图等方式将这些数据可视化,以便更好地理解和分析船舶的状态变化。 4. 船舶密度热力图:将AIS数据中的船舶位置点进行聚类,并使用热力图展示各个聚类区域的密度变化,可以帮助我们了解船舶活动的热点区域。 5. 船舶速度分布直方图:根据AIS数据中的船舶速度信息,可以创建直方图,以展示船舶速度的分布情况。这有助于了解船舶的运行状态和速度特征。 使用Python进行AIS数据的可视化可以帮助我们更好地理解和分析船舶的行为模式、流量分布以及异常情况。同时,Python具有丰富的数据处理和可视化库,使得我们可以轻松地实现对AIS数据的可视化分析。 ### 回答2: AIS数据是指船舶自动识别系统(Automatic Identification System)所产生的船舶信息数据。使用Python进行AIS数据的可视化可以帮助我们更好地理解和分析船舶活动、交通流量等情况。 要进行AIS数据可视化,首先需要获取AIS数据。可以通过各种途径获得,例如航运公司的数据提供商、船舶跟踪网站等。获取到AIS数据后,我们可以使用Python的数据处理库(例如Pandas)来读取和处理数据。 在数据处理阶段,我们可以对AIS数据进行筛选、清洗和预处理。例如,可以根据时间、地理位置等条件筛选出特定区域、特定时间段的数据。同时,我们还可以将AIS数据与其他地理信息数据(例如地图数据)进行整合,以便进行更全面的可视化分析。 接下来,我们可以使用Python的数据可视化库(例如Matplotlib、Seaborn)来进行AIS数据的可视化。常见的可视化方式包括散点图、折线图、热力图等。例如,我们可以使用散点图来展示船舶在不同时间和地理位置的分布情况,以及船舶的速度和航向等信息。同时,我们也可以使用折线图来展示船舶的轨迹和航线等。 此外,我们还可以进行更高级的可视化分析,例如基于AIS数据的航行路径规划、船舶活动热点分析等。这些分析可以帮助航运公司、港口管理机构等从AIS数据中获得更多有价值的信息,并支持相关决策的制定和优化。 总之,利用Python进行AIS数据的可视化可以帮助我们更好地理解和分析船舶活动情况。通过适当选择和应用数据处理和可视化工具,我们可以更直观地展示AIS数据的特征和规律,为相关行业和领域提供更好的决策支持。 ### 回答3: AIS数据(船舶自动识别系统)是一种用于船舶位置和运行状态的全球性信息系统。通过AIS数据,可以获取船舶的位置、航向、航速、船名等信息。将AIS数据进行可视化是一种将数据以图形化形式展示的方法,能够更直观地了解船舶的位置和运行状态。 Python是一种功能强大的编程语言,拥有丰富的数据处理和可视化库。在Python中,可以使用著名的数据处理库pandas来处理AIS数据。首先,我们可以使用pandas读取AIS数据,并对数据进行清洗和整理,剔除无效或重复的数据。 接着,可以使用Python的可视化库matplotlib对AIS数据进行可视化。使用matplotlib可以绘制折线图、散点图、热力图等多种图表,以直观地展示船舶的位置和运行状态。例如,可以通过绘制散点图来表示船舶在海上的分布情况,使用不同的颜色或大小来表示船舶的不同属性。 此外,还可以使用Python的地理信息处理库geopandas来将AIS数据与地理信息数据进行融合,实现更丰富的可视化效果。例如,可以将AIS数据与地图数据进行叠加,以在地图上显示船舶的位置和运行路径。 综上所述,通过使用Python进行AIS数据可视化,我们可以更直观地了解船舶的位置和运行状态。这不仅有助于海事监管和船舶管理,还可以提供有关船舶运输和航行安全的重要信息。
非常感谢您的提问!以下是我为您提供的 Python 代码,可以读取 AIS 数据集,进行轨迹段聚类,并在此基础上进行轨迹预测,最后输出可视化结果: python import pandas as pd import numpy as np from sklearn.cluster import DBSCAN from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsRegressor import matplotlib.pyplot as plt # 读取 AIS 数据集 ais_data = pd.read_csv('ais_data.csv') # 转换时间戳格式 ais_data['Timestamp'] = pd.to_datetime(ais_data['Timestamp']) # 对经纬度进行标准化 scaler = StandardScaler() ais_data[['Longitude', 'Latitude']] = scaler.fit_transform(ais_data[['Longitude', 'Latitude']]) # 使用 DBSCAN 进行轨迹段聚类 dbscan = DBSCAN(eps=0.5, min_samples=10) ais_data['Cluster'] = dbscan.fit_predict(ais_data[['Longitude', 'Latitude']]) # 对每个聚类进行轨迹预测 predicted_data = pd.DataFrame(columns=['Longitude', 'Latitude', 'Timestamp']) for cluster in np.unique(ais_data['Cluster']): cluster_data = ais_data[ais_data['Cluster'] == cluster] if len(cluster_data) > 10: knn = KNeighborsRegressor(n_neighbors=5) knn.fit(cluster_data[['Longitude', 'Latitude']], cluster_data['Timestamp']) predicted_timestamps = knn.predict(cluster_data[['Longitude', 'Latitude']]) predicted_cluster_data = cluster_data[['Longitude', 'Latitude']].copy() predicted_cluster_data['Timestamp'] = predicted_timestamps predicted_data = pd.concat([predicted_data, predicted_cluster_data]) # 可视化结果 plt.scatter(ais_data['Longitude'], ais_data['Latitude'], c=ais_data['Cluster']) plt.scatter(predicted_data['Longitude'], predicted_data['Latitude'], c='r') plt.show() 希望这段代码能够帮助您完成您的任务!如果您有任何问题或需要进一步的帮助,请随时告诉我。
### 回答1: AIS (Adaptive Incremental Smoothing) 轨迹压缩算法是一种精度可控的轨迹压缩算法,适用于传感器网络、移动设备等限制资源的环境中。算法思路是利用数据点之间的距离信息,逐步降低轨迹精度,直到压缩比例满足用户设定的阈值,从而达到最小化轨迹数据量,保证压缩后轨迹与原始轨迹的误差在用户容忍范围内的目的。 在 Python 中实现 AIS 轨迹压缩算法的具体步骤如下: 1. 导入必要的库和模块。包括 NumPy、SciPy、Matplotlib 等。 2. 定义一个叫做“compute_distance”的函数,用于计算数据点之间的距离。可以使用欧几里得距离、曼哈顿距离等多种距离定义,根据具体需求而定。 3. 定义一个叫做“smooth_trajectory”的函数,用于根据用户设定的压缩比例和距离信息,实现逐步降低轨迹精度。具体过程是:首先按照一定的间隔计算原始轨迹中相邻点之间的距离;然后根据用户设定的压缩比例,选择相邻数据点之间的最大距离作为窗口大小,对每个窗口内的数据点进行平滑处理,即采用均值或者中位数等方法得到一个新的数据点作为压缩后的点。重复进行此操作,直到达到用户设定的压缩比例。 4. 进行数据可视化,比较压缩前后的轨迹。 总之,AIS 轨迹压缩算法是一种高效可控的轨迹压缩方法,在 Python 等编程语言中都有较为完善的实现。在实际应用中,可以根据具体需求和环境选择最适合的算法和实现方式,以达到最佳的压缩效果。 ### 回答2: AIS(Adaptive Image Segmentation)轨迹压缩算法是一种可以实现轨迹数据压缩的算法,使用Python进行实现。该算法首先对轨迹数据进行抽稀处理,将数据进行一定程度的简化。然后,通过聚类算法将轨迹数据进行分组,使得轨迹之间有一定的相似性。最后,利用不同分组间的相似度进行相应的压缩处理,实现轨迹数据的压缩。 在Python中实现AIS轨迹压缩算法可以使用scikit-learn库中的聚类算法实现轨迹的分组。此外,还可以使用pandas库进行数据的处理和分析。对于大规模数据的处理,也可以使用多线程技术进行加速处理。 总之,AIS轨迹压缩算法是一种非常有效的数据压缩算法,可以在保证数据质量的前提下实现数据的压缩,同时使用Python进行实现也十分方便。 ### 回答3: AIS(Adaptive-Interval-Smooth)轨迹压缩算法是一种常用的轨迹数据压缩技术。该算法可以在存在大量轨迹数据时,将数据量压缩至合理的大小,并保留轨迹信息的完整性。Python是一种广泛使用的编程语言,拥有强大的数据处理和分析功能,因此使用Python来实现AIS轨迹压缩算法非常合适。 在Python中,实现AIS轨迹压缩算法的步骤如下:首先读取轨迹数据,将数据按时间轴排序,并将轨迹点按照距离相近的方式合并成线段。然后,通过调整参数来自适应地压缩每个线段,并确保良好的压缩效果。最后,将所有压缩后的轨迹数据合并成一个数据集,可以进行可视化显示或进行其他数据分析操作。 使用Python实现AIS轨迹压缩算法,可以大大提高数据处理的效率和精度,并且可以进行更加复杂和多样化的数据分析。由于Python语言强大的数据处理和可视化功能,它已成为轨迹数据分析领域的重要工具和编程语言。
基于Python的船舶航行AIS大数据爬取与分析涉及以下几个关键步骤: 1. 数据爬取:使用Python中的网络爬虫库,如BeautifulSoup或Scrapy,从船舶AIS相关的网站或API中获取数据。这些数据包括船舶的实时位置、速度、方向、航行状态等。 2. 数据清洗与预处理:对于获取的原始数据进行清洗和预处理,去除重复、缺失或无效的数据,并对数据进行格式转换、标准化和归一化处理,以方便后续的分析。 3. 数据存储与管理:将处理后的数据存储到适当的数据库管理系统(如MySQL或MongoDB)中,以便后续的查询与分析操作。使用Python的数据库访问库(如SQLAlchemy)来实现与数据库的交互。 4. 数据分析与可视化:使用Python的数据分析库(如Pandas、NumPy和SciPy)对航行AIS大数据进行统计分析和挖掘。通过计算平均速度、航行距离、船舶密度等指标,揭示船舶航行的规律和趋势。同时,基于Matplotlib或Seaborn等可视化库,绘制直方图、散点图、热力图等图表,对分析结果进行直观展示。 5. 数据挖掘与预测建模:通过数据挖掘技术,如聚类、分类、关联规则挖掘等,发现隐含在船舶AIS数据中的规律和关联性。利用机器学习算法,如决策树、支持向量机或神经网络,构建预测模型,实现对船舶航行状态、船舶碰撞风险等的预测和警报。 基于Python的船舶航行AIS大数据爬取与分析,可以帮助船舶管理者、海事监管部门等了解船舶运行情况、监测船舶安全、优化船舶路线等,为船舶运营和海上安全提供有力支持。

最新推荐

安全文明监理实施细则_工程施工土建监理资料建筑监理工作规划方案报告_监理实施细则.ppt

安全文明监理实施细则_工程施工土建监理资料建筑监理工作规划方案报告_监理实施细则.ppt

"REGISTOR:SSD内部非结构化数据处理平台"

REGISTOR:SSD存储裴舒怡,杨静,杨青,罗德岛大学,深圳市大普微电子有限公司。公司本文介绍了一个用于在存储器内部进行规则表达的平台REGISTOR。Registor的主要思想是在存储大型数据集的存储中加速正则表达式(regex)搜索,消除I/O瓶颈问题。在闪存SSD内部设计并增强了一个用于regex搜索的特殊硬件引擎,该引擎在从NAND闪存到主机的数据传输期间动态处理数据为了使regex搜索的速度与现代SSD的内部总线速度相匹配,在Registor硬件中设计了一种深度流水线结构,该结构由文件语义提取器、匹配候选查找器、regex匹配单元(REMU)和结果组织器组成。此外,流水线的每个阶段使得可能使用最大等位性。为了使Registor易于被高级应用程序使用,我们在Linux中开发了一组API和库,允许Registor通过有效地将单独的数据块重组为文件来处理SSD中的文件Registor的工作原

typeerror: invalid argument(s) 'encoding' sent to create_engine(), using con

这个错误通常是由于使用了错误的参数或参数格式引起的。create_engine() 方法需要连接数据库时使用的参数,例如数据库类型、用户名、密码、主机等。 请检查你的代码,确保传递给 create_engine() 方法的参数是正确的,并且符合参数的格式要求。例如,如果你正在使用 MySQL 数据库,你需要传递正确的数据库类型、主机名、端口号、用户名、密码和数据库名称。以下是一个示例: ``` from sqlalchemy import create_engine engine = create_engine('mysql+pymysql://username:password@hos

数据库课程设计食品销售统计系统.doc

数据库课程设计食品销售统计系统.doc

海量3D模型的自适应传输

为了获得的目的图卢兹大学博士学位发布人:图卢兹国立理工学院(图卢兹INP)学科或专业:计算机与电信提交人和支持人:M. 托马斯·福吉奥尼2019年11月29日星期五标题:海量3D模型的自适应传输博士学校:图卢兹数学、计算机科学、电信(MITT)研究单位:图卢兹计算机科学研究所(IRIT)论文主任:M. 文森特·查维拉特M.阿克塞尔·卡里尔报告员:M. GWendal Simon,大西洋IMTSIDONIE CHRISTOPHE女士,国家地理研究所评审团成员:M. MAARTEN WIJNANTS,哈塞尔大学,校长M. AXEL CARLIER,图卢兹INP,成员M. GILLES GESQUIERE,里昂第二大学,成员Géraldine Morin女士,图卢兹INP,成员M. VINCENT CHARVILLAT,图卢兹INP,成员M. Wei Tsang Ooi,新加坡国立大学,研究员基于HTTP的动态自适应3D流媒体2019年11月29日星期五,图卢兹INP授予图卢兹大学博士学位,由ThomasForgione发表并答辩Gilles Gesquière�

1.创建以自己姓名拼音缩写为名的数据库,创建n+自己班级序号(如n10)为名的数据表。2.表结构为3列:第1列列名为id,设为主键、自增;第2列列名为name;第3列自拟。 3.为数据表创建模型,编写相应的路由、控制器和视图,视图中用无序列表(ul 标签)呈现数据表name列所有数据。 4.创建视图,在表单中提供两个文本框,第一个文本框用于输入以上数据表id列相应数值,以post方式提交表单。 5.控制器方法根据表单提交的id值,将相应行的name列修改为第二个文本框中输入的数据。

步骤如下: 1. 创建数据库和数据表 创建名为xny_n10的数据表,其中xny为姓名拼音缩写,n10为班级序号。 ``` CREATE DATABASE IF NOT EXISTS xny_n10; USE xny_n10; CREATE TABLE IF NOT EXISTS xny_n10 ( id INT(11) PRIMARY KEY AUTO_INCREMENT, name VARCHAR(50), column3 VARCHAR(50) ); ``` 2. 创建模型 在app/Models目录下创建XnyN10.php文件,定义XnyN10模型类,继承自I

液压推板式隧道电阻炉计算机监控设计毕业设计.doc

液压推板式隧道电阻炉计算机监控设计毕业设计.doc

HAL多学科开放获取档案库的作用及代理重加密和认证委托的研究

0HAL编号:tel-038172580https://theses.hal.science/tel-038172580提交日期:2022年10月17日0HAL是一个多学科开放获取档案库,用于存储和传播科学研究文档,无论其是否发表。这些文档可以来自法国或国外的教育和研究机构,也可以来自公共或私人研究中心。0HAL多学科开放获取档案库旨在存储和传播法国或国外的教育和研究机构、公共或私人实验室发表或未发表的研究文档。0代理重加密和认证委托的贡献0Anass Sbai0引用此版本:0Anass Sbai. 代理重加密和认证委托的贡献. 离散数学[cs.DM]. 皮卡第朱尔大学, 2021. 法语. �NNT:2021AMIE0032�. �tel-03817258�0博士学位论文0专业“计算机科学”0提交给科技与健康学院博士学位学校0皮卡第朱尔大学0由0Anass SBAI0获得皮卡第朱尔大学博士学位0代理重加密和认证委托的贡献0于2021年7月5日,在评审人的意见后,面向考试委员会进行

c++输入若干不同的整数构成的升序序列,请编写一个程序,找出序列中有多少个数是序列中其他两个数的平均值要求使用算法,使计算量最小,计算时间最短

算法思路: 1. 先将输入的升序序列存储到vector<int>中 2. 枚举每个数,以该数为平均数,查找序列中是否存在两个数的平均值等于该数 3. 可以采用双指针法,从序列的两端开始查找,如果两个指针所指的数的平均值大于目标数,则右指针左移;如果平均值小于目标数,则左指针右移;如果平均值等于目标数,则找到一个符合条件的数 4. 计数器加1,继续枚举下一个数 代码实现如下: ```c++ #include<iostream> #include<vector> using namespace std; int main() { int n; cin >> n;

基于jsp的景区票务系统源码数据库论文.doc

基于jsp的景区票务系统源码数据库论文.doc