免疫克隆选择算法python代码
时间: 2023-05-20 12:03:37 浏览: 111
以下是一个简单的免疫克隆选择算法的 Python 代码示例:
```python
import random
# 定义适应度函数
def fitness(individual):
# TODO: 根据个体的表现计算适应度
return 0
# 初始化种群
def init_population(pop_size, gene_size):
population = []
for i in range(pop_size):
individual = [random.randint(0, 1) for j in range(gene_size)]
population.append(individual)
return population
# 克隆操作
def clone(population, clone_size):
clones = []
for i in range(clone_size):
# 选择适应度最高的个体进行克隆
best_individual = max(population, key=fitness)
clone = best_individual.copy()
# 对克隆进行变异操作
for j in range(len(clone)):
if random.random() < 0.1:
clone[j] = 1 - clone[j]
clones.append(clone)
return clones
# 选择操作
def select(population, select_size):
# 根据适应度排序
sorted_population = sorted(population, key=fitness, reverse=True)
# 选择适应度最高的个体
selected = sorted_population[:select_size]
return selected
# 免疫克隆选择算法
def ics_algorithm(pop_size, gene_size, clone_size, select_size, max_iter):
# 初始化种群
population = init_population(pop_size, gene_size)
for i in range(max_iter):
# 克隆操作
clones = clone(population, clone_size)
# 合并种群和克隆
population.extend(clones)
# 选择操作
population = select(population, pop_size)
# 返回适应度最高的个体
best_individual = max(population, key=fitness)
return best_individual
# 示例运行
best_individual = ics_algorithm(pop_size=100, gene_size=10, clone_size=20, select_size=50, max_iter=100)
print(best_individual)
```
请注意,这只是一个简单的示例代码,实际应用中需要根据具体问题进行修改和优化。
阅读全文