python实现EDA算法
时间: 2023-07-26 09:19:31 浏览: 167
常用数据挖掘算法总结及Python实现.pdf
5星 · 资源好评率100%
EDA(Estimation of Distribution Algorithm)是一种基于概率模型的进化算法。下面是一个Python实现的示例:
首先,我们需要导入必要的库:
``` python
import numpy as np
from scipy.stats import truncnorm
```
然后,我们定义一个函数来初始化种群:
``` python
def initialize_population(pop_size, n_vars, bounds):
pop = []
for i in range(pop_size):
individual = []
for j in range(n_vars):
a, b = bounds[j]
r = truncnorm.rvs(a, b)
individual.append(r)
pop.append(individual)
return np.array(pop)
```
其中,`pop_size`是种群大小,`n_vars`是变量数量,`bounds`是变量的范围。`truncnorm.rvs(a, b)`是一个用于生成截断正态分布的函数。
接下来,我们定义一个函数来计算适应度:
``` python
def evaluate(population, fitness_func):
return np.array([fitness_func(individual) for individual in population])
```
其中,`fitness_func`是一个用于计算适应度的函数。
然后,我们定义一个函数来选择父代:
``` python
def select_parents(population, fitness, n_parents):
fitness = fitness / np.sum(fitness)
parents_idx = np.random.choice(np.arange(len(population)), size=n_parents, replace=False, p=fitness)
return population[parents_idx]
```
其中,`n_parents`是父代数量。
接下来,我们定义一个函数来生成新的个体:
``` python
def generate_offspring(parents, n_offspring):
n_parents, n_vars = parents.shape
offspring = []
for i in range(n_offspring):
p1 = parents[np.random.randint(n_parents)]
p2 = parents[np.random.randint(n_parents)]
child = []
for j in range(n_vars):
if np.random.rand() < 0.5:
child.append(p1[j])
else:
child.append(p2[j])
offspring.append(child)
return np.array(offspring)
```
其中,`n_offspring`是要生成的个体数量。
最后,我们定义一个函数来运行EDA算法:
``` python
def eda(pop_size, n_vars, bounds, fitness_func, n_generations):
population = initialize_population(pop_size, n_vars, bounds)
for i in range(n_generations):
fitness = evaluate(population, fitness_func)
parents = select_parents(population, fitness, pop_size // 2)
offspring = generate_offspring(parents, pop_size)
population = np.vstack((population, offspring))
fitness = evaluate(population, fitness_func)
elite_idx = np.argsort(fitness)[-pop_size:]
population = population[elite_idx]
return population[np.argmax(evaluate(population, fitness_func))]
```
其中,`n_generations`是迭代次数,返回的是最优个体。
以上就是一个简单的Python实现的EDA算法。当然,这只是一个示例,实际应用中需要根据具体问题进行调整。
阅读全文