生成matlab的马氏距离法对光谱采集异常的样本进行剔除
时间: 2023-10-25 09:09:50 浏览: 335
好的,下面是使用MATLAB实现马氏距离法对光谱采集异常样本进行剔除的步骤:
1. 读取样本数据,将其转化为矩阵形式,并进行标准化处理。
```matlab
% 读取数据
data = load('spectra_data.txt');
% 将数据转化为矩阵形式
X = data(:,2:end);
% 对数据进行标准化处理
X = zscore(X);
```
2. 计算协方差矩阵,并选择一个参考样本。
```matlab
% 计算协方差矩阵
cov_X = cov(X);
% 选择一个参考样本
ref_sample = X(1,:);
```
3. 计算所有样本与参考样本之间的马氏距离。
```matlab
% 计算所有样本与参考样本之间的马氏距离
d_M = mahal(ref_sample,X);
```
4. 根据设定的阈值,剔除马氏距离大于该阈值的样本。
```matlab
% 设定阈值
threshold = 2.5;
% 剔除马氏距离大于阈值的样本
X(d_M > threshold,:) = [];
```
完整代码如下:
```matlab
% 读取数据
data = load('spectra_data.txt');
% 将数据转化为矩阵形式
X = data(:,2:end);
% 对数据进行标准化处理
X = zscore(X);
% 计算协方差矩阵
cov_X = cov(X);
% 选择一个参考样本
ref_sample = X(1,:);
% 计算所有样本与参考样本之间的马氏距离
d_M = mahal(ref_sample,X);
% 设定阈值
threshold = 2.5;
% 剔除马氏距离大于阈值的样本
X(d_M > threshold,:) = [];
% 输出剔除异常样本后的样本数
disp(['剔除异常样本后,剩余样本数为:' num2str(size(X,1))]);
```
阅读全文