(data.iloc[:,1:], data.iloc[:,0]解释一下
时间: 2023-12-23 11:06:28 浏览: 253
(data.iloc[:, 1:], data.iloc[:, 0])是用于将数据集分成特征(features)和标签(labels)的语句。
在本语句中,"data.iloc[:, 1:]"表示选取数据集中除第一列以外的所有列作为特征,因为第一列是标签。其中,"iloc"是pandas中用于按位置选择行和列的函数,":"表示选取所有行,"1:"表示从第二列开始选取所有列。
"data.iloc[:, 0]"表示选取数据集中的第一列作为标签。其中,"0"指的是第一列,因为在Python中,列索引从0开始。
因此,将数据集按照(data.iloc[:, 1:], data.iloc[:, 0])的方式分开,就能够将数据集中的特征和标签分别存储在两个变量中,以便后续的模型训练和预测。
相关问题
data.iloc[2,4] = 0 new_data = data.iloc[:,1:4] new_data0 = data.iloc[:,1:4]
As an AI language model, I can understand that you are working with a pandas DataFrame object and performing some operations on it.
The first line of code assigns the value 0 to the element at row index 2 and column index 4 of the DataFrame object 'data'.
The second line of code creates a new DataFrame object 'new_data' by selecting all rows and columns from index 1 to 3 (excluding column index 4) of the 'data' DataFrame. This can be useful for selecting specific columns of a DataFrame for further analysis or visualization.
The third line of code creates another new DataFrame object 'new_data0' by selecting all rows and columns from index 1 to 3 (excluding column index 4) of the 'data' DataFrame. However, this line of code seems redundant as it is identical to the second line of code.
这段代码是什么意思dt=(data.iloc[:,1:]-(data.iloc[:,1:].min()))/((data.iloc[:,1:].max())-(data.iloc[:,1:].min())) data.iloc[:,1:]=dt data
这段代码是将数据集中的数值型特征进行归一化处理,使其数值范围在0到1之间。其中,data.iloc[:,1:]表示选取数据集中除第一列(通常为编号或标签)外的所有列,data.iloc[:,1:].min()和data.iloc[:,1:].max()分别表示数据集中数值型特征的最小值和最大值,dt表示归一化后的数据集。最后一行代码data.iloc[:,1:]=dt将归一化后的数据集覆盖原来的数值型特征列。
阅读全文
相关推荐
















