matlab计算FVM方法圆柱绕流
时间: 2023-09-18 19:06:19 浏览: 368
FVM (有限体积法)是一种常用的数值分析方法,用于求解偏微分方程。这种方法将求解区域划分为许多小的立方体或六面体,然后在每个小立方体或六面体内计算方程的平均量。在圆柱绕流问题中,FVM可以用来计算速度、压力和涡量等物理量。
以下是实现FVM方法计算圆柱绕流的基本步骤:
1. 将求解区域划分为有限数量的小的立方体或六面体,称为控制体。
2. 在每个控制体内计算方程的平均量。例如,在速度方程中,可以使用质量守恒方程通过控制体计算速度的平均值。
3. 在控制体之间定义通量。例如,在速度方程中,通量可以定义为速度乘以面积。
4. 通过控制体之间的通量计算物理量的变化率。
5. 将方程离散化,并通过迭代求解方程。
对于圆柱绕流问题,可以使用FVM方法来计算速度和压力场。首先,将求解区域划分为有限数量的控制体,并将方程离散化。然后,在每个控制体内计算速度和压力的平均值,并通过控制体之间的通量计算速度和压力的变化率。最后,通过迭代求解方程,得到速度和压力场的解。
需要注意的是,FVM方法的求解精度和计算效率与控制体的数量有关。因此,在实际计算中,需要根据要求的精度和计算资源选择适当的控制体数量。
相关问题
写一段FVM方法计算圆柱绕流的matlab程序
以下是一个简单的FVM方法计算圆柱绕流的Matlab程序示例。该程序使用结构化网格,采用二阶中心差分法计算通量,采用隐式时间推进方法,使用SOR迭代方法求解线性方程组,计算结果输出为速度场和压力场图像。
```matlab
% 圆柱绕流计算程序
% 使用FVM方法,在结构化网格上计算圆柱绕流
% 二阶中心差分法计算通量,隐式时间推进,SOR迭代求解线性方程组
% 常数定义
Re = 100; % 雷诺数
L = 1; % 圆柱直径
U = 1; % 入口速度
mu = 1/Re; % 动力粘度系数
rho = 1; % 流体密度
dt = 0.01; % 时间步长
N = 50; % 网格数
tol = 1e-6; % 收敛容限
maxiter = 1000; % 最大迭代次数
% 网格生成
x = linspace(0,L,N+2); % x方向坐标
y = linspace(0,L,N+2); % y方向坐标
dx = x(2)-x(1); % x方向网格间距
dy = y(2)-y(1); % y方向网格间距
[X,Y] = meshgrid(x,y); % 生成网格点坐标矩阵
U = zeros(N+2,N+2); % x方向速度场
V = zeros(N+2,N+2); % y方向速度场
P = zeros(N+2,N+2); % 压力场
F = zeros(N+2,N+2); % x方向通量
G = zeros(N+2,N+2); % y方向通量
% 初始化速度场和压力场
U(1,:) = U(end,:) = U(:,1) = U(:,end) = U0; % 边界条件
V(1,:) = V(end,:) = V(:,1) = V(:,end) = 0;
P(1,:) = P(end,:) = P(:,1) = P(:,end) = 0;
% 时间推进
for n = 1:1000
F(2:end-1,2:end-1) = -(P(3:end,2:end-1)-P(1:end-2,2:end-1))/(2*dx) + mu*(U(3:end,2:end-1)-2*U(2:end-1,2:end-1)+U(1:end-2,2:end-1))/(dx^2);
G(2:end-1,2:end-1) = -(P(2:end-1,3:end)-P(2:end-1,1:end-2))/(2*dy) + mu*(V(2:end-1,3:end)-2*V(2:end-1,2:end-1)+V(2:end-1,1:end-2))/(dy^2);
U(2:end-1,2:end-1) = U(2:end-1,2:end-1) + dt*(-F(2:end-1,2:end-1)+((U(3:end,2:end-1)-2*U(2:end-1,2:end-1)+U(1:end-2,2:end-1))/(dx^2)+(U(2:end-1,3:end)-2*U(2:end-1,2:end-1)+U(2:end-1,1:end-2))/(dy^2)));
V(2:end-1,2:end-1) = V(2:end-1,2:end-1) + dt*(-G(2:end-1,2:end-1)+((V(3:end,2:end-1)-2*V(2:end-1,2:end-1)+V(1:end-2,2:end-1))/(dx^2)+(V(2:end-1,3:end)-2*V(2:end-1,2:end-1)+V(2:end-1,1:end-2))/(dy^2)));
% 处理边界条件
U(1,:) = U(end,:) = U(:,1) = U(:,end) = U0;
V(1,:) = V(end,:) = V(:,1) = V(:,end) = 0;
P = SOR_method(P, F, G, rho, dx, dy, dt, maxiter, tol);
end
% 输出结果
% 绘制速度场
figure();
quiver(X,Y,U,V);
title('Velocity field');
xlabel('x');
ylabel('y');
% 绘制压力场
figure();
contourf(X,Y,P);
title('Pressure field');
xlabel('x');
ylabel('y');
% SOR迭代求解线性方程组
function [P] = SOR_method(P, F, G, rho, dx, dy, dt, maxiter, tol)
omega = 1.5; % SOR松弛因子
for iter = 1:maxiter
P_old = P;
for i = 2:size(P,1)-1
for j = 2:size(P,2)-1
P(i,j) = (1-omega)*P_old(i,j) + omega*(rho*dx^2*dy^2*(F(i,j)-F(i-1,j)+G(i,j)-G(i,j-1)) + P(i-1,j)*dy^2 + P(i+1,j)*dy^2 + P(i,j-1)*dx^2 + P(i,j+1)*dx^2)/(2*(dx^2+dy^2));
end
end
if max(abs(P(:)-P_old(:))) < tol
break;
end
end
end
```
注意:以上代码仅为示例,可能存在错误或不足之处,需要根据具体问题进行修改和完善。
matlab fvm,The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with O...
The Finite Volume Method (FVM) is a numerical method used in Computational Fluid Dynamics (CFD) for solving partial differential equations governing fluid flow. It involves discretizing the domain into a finite number of control volumes and applying conservation laws on each control volume. The FVM is widely used in industry and academia for simulating complex fluid flows, including turbulent flows, multiphase flows, and combustion.
MATLAB is a powerful numerical computing platform that can be used for implementing the FVM in CFD simulations. MATLAB provides a rich set of tools for solving partial differential equations, including built-in solvers for both steady-state and time-dependent problems. In addition, MATLAB has a large community of users and developers, which makes it easy to find support and resources for implementing the FVM in MATLAB.
The book "The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM and MATLAB" by F. Moukalled, L. Mangani, and M. Darwish provides a comprehensive introduction to the FVM and its implementation in MATLAB and OpenFOAM, an open-source CFD software. The book covers the theoretical foundations of the FVM, including discretization schemes, boundary conditions, and solution algorithms. It also includes practical examples and case studies that demonstrate the application of the FVM to a wide range of fluid flow problems.
阅读全文