请使用vivado hls 2018.3分别实现卡尔曼滤波和lms自适应滤波器
时间: 2023-08-26 13:04:59 浏览: 175
Vivado2018.1及license,亲测可用
好的,我会提供一个大致的流程来实现卡尔曼滤波和LMS自适应滤波器的Vivado HLS 2018.3。
首先,我们需要包含以下头文件:
```c
#include <hls_math.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
```
接下来,我们来看一下卡尔曼滤波器的实现。在这个例子中,我们假设我们有一个1维的状态量,且观测值是从传感器中读取的。我们的目标是使用卡尔曼滤波器来估计状态变量,并且要求实现一个能够快速运行并且使用较少资源的卡尔曼滤波器。
```c
// 定义状态变量
float x_hat = 0.0;
float p = 0.0;
// 定义系统噪声和观测噪声的方差
float q = 0.1;
float r = 1.0;
// 定义卡尔曼增益
float k = 0.0;
// 定义传感器读数
float z = 0.0;
// 定义卡尔曼滤波器的主函数
void kalman_filter(float z_meas)
{
// 预测卡尔曼滤波器状态
float x_hat_priori = x_hat;
float p_priori = p + q;
// 计算卡尔曼增益
k = p_priori / (p_priori + r);
// 更新状态估计
x_hat = x_hat_priori + k * (z_meas - x_hat_priori);
p = (1 - k) * p_priori;
}
```
接下来,我们来看一下LMS自适应滤波器的实现。在这个例子中,我们假设我们有一个输入信号x和一个期望信号d。我们的目标是使用LMS自适应滤波器来估计系统的传递函数,并且要求实现一个能够快速运行并且使用较少资源的LMS自适应滤波器。
```c
// 定义滤波器参数
#define N 10
float h[N] = { 0.0 };
float y = 0.0;
// 定义学习速率
float mu = 0.01;
// 定义输入信号和期望信号
float x = 0.0;
float d = 0.0;
// 定义LMS自适应滤波器的主函数
void lms_filter(float x_in, float d_in)
{
// 更新滤波器输出
y = 0;
for (int i = 0; i < N; i++) {
y += h[i] * x[i];
}
// 更新滤波器参数
for (int i = 0; i < N; i++) {
h[i] += mu * (d - y) * x[i];
}
// 将新的输入信号添加到缓冲区
for (int i = N - 1; i >= 1; i--) {
x[i] = x[i - 1];
}
x[0] = x_in;
d = d_in;
}
```
这里只是提供了一个大致的流程,具体的实现需要根据具体的应用场景进行修改。同时,需要注意的是,在编写Vivado HLS代码时,还需要使用一些特殊的指令和编译选项来优化代码的性能和资源利用率。
阅读全文