请给我一段matlab代码用svm实现剪刀石头布的图像识别
时间: 2023-12-29 17:04:46 浏览: 88
matlab 石头剪刀布
以下是一段使用 SVM 实现剪刀石头布的图像识别的 Matlab 代码:
```matlab
% 加载训练集和测试集
train_images = loadMNISTImages('train-images.idx3-ubyte');
train_labels = loadMNISTLabels('train-labels.idx1-ubyte');
test_images = loadMNISTImages('test-images.idx3-ubyte');
test_labels = loadMNISTLabels('test-labels.idx1-ubyte');
% 提取剪刀石头布的图像
train_images_scissors = train_images(:, train_labels == 0);
train_images_rock = train_images(:, train_labels == 1);
train_images_paper = train_images(:, train_labels == 2);
test_images_scissors = test_images(:, test_labels == 0);
test_images_rock = test_images(:, test_labels == 1);
test_images_paper = test_images(:, test_labels == 2);
% 训练 SVM 模型
train_data = [train_images_scissors, train_images_rock, train_images_paper]';
train_labels = [zeros(size(train_images_scissors, 2), 1); ones(size(train_images_rock, 2), 1); 2*ones(size(train_images_paper, 2), 1)];
svm_model = fitcsvm(train_data, train_labels);
% 测试 SVM 模型
test_data = [test_images_scissors, test_images_rock, test_images_paper]';
test_labels = [zeros(size(test_images_scissors, 2), 1); ones(size(test_images_rock, 2), 1); 2*ones(size(test_images_paper, 2), 1)];
predicted_labels = predict(svm_model, test_data);
% 计算准确率
accuracy = sum(predicted_labels == test_labels) / length(test_labels);
fprintf('准确率为 %f\n', accuracy);
```
这段代码使用了 SVM 对剪刀石头布的图像进行识别,训练和测试数据集来自于 MNIST 数据集。其中,`train_images` 和 `test_images` 分别是训练集和测试集的图像数据,`train_labels` 和 `test_labels` 分别是训练集和测试集的标签数据;`train_images_scissors`、`train_images_rock` 和 `train_images_paper` 分别是从训练集中提取剪刀、石头和布的图像数据,`test_images_scissors`、`test_images_rock` 和 `test_images_paper` 分别是从测试集中提取剪刀、石头和布的图像数据。
使用 `fitcsvm` 函数训练 SVM 模型,使用 `predict` 函数预测测试集的标签,并计算准确率。
阅读全文