当按键按下时开始记数,得到按键按下的时间

时间: 2023-12-03 13:04:19 浏览: 35
好的,您可以使用下面的Python代码来实现这个功能: ```python import time # 等待按键按下 input("请按下任意键开始记时...") # 获取当前时间 start_time = time.time() # 等待按键释放 input("请释放按键结束计时...") # 获取当前时间 end_time = time.time() # 计算按键按下的时间 duration = end_time - start_time print("按键按下的时间为:{:.2f} 秒".format(duration)) ``` 当您运行这段代码时,它会等待您按下任意键,然后记录按键按下的时间。当您释放按键时,它会计算出按键按下的时间,并将其打印到控制台上。请注意,此代码中的时间以秒为单位进行计算,并使用 `time` 模块来获取当前时间。
相关问题

当按键按下时开始记数,得到按键按下的时间,基于f407标准库,用定时器实现

好的,您可以使用下面的代码来实现这个功能,基于 f407 标准库,使用定时器 TIM2 实现计时: ```c #include "stm32f4xx.h" #include <stdio.h> volatile uint32_t start_time = 0; volatile uint32_t end_time = 0; volatile uint32_t duration = 0; volatile uint8_t key_pressed = 0; void TIM2_IRQHandler(void) { if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET) { TIM_ClearITPendingBit(TIM2, TIM_IT_Update); if (key_pressed) { end_time = TIM_GetCounter(TIM2); duration = end_time - start_time; } } } void EXTI0_IRQHandler(void) { if (EXTI_GetITStatus(EXTI_Line0) != RESET) { EXTI_ClearITPendingBit(EXTI_Line0); if (!key_pressed) { start_time = TIM_GetCounter(TIM2); key_pressed = 1; } else { end_time = TIM_GetCounter(TIM2); duration = end_time - start_time; key_pressed = 0; printf("按键按下的时间为:%d 毫秒\n", duration); } } } void init_gpio(void) { GPIO_InitTypeDef GPIO_InitStruct; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); GPIO_InitStruct.GPIO_Pin = GPIO_Pin_0; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IN; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOA, &GPIO_InitStruct); } void init_timer(void) { TIM_TimeBaseInitTypeDef TIM_InitStruct; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); TIM_InitStruct.TIM_Period = 0xFFFFFFFF; TIM_InitStruct.TIM_Prescaler = SystemCoreClock / 1000 - 1; TIM_InitStruct.TIM_ClockDivision = TIM_CKD_DIV1; TIM_InitStruct.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2, &TIM_InitStruct); TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); TIM_Cmd(TIM2, ENABLE); } void init_exti(void) { EXTI_InitTypeDef EXTI_InitStruct; NVIC_InitTypeDef NVIC_InitStruct; RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE); SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOA, EXTI_PinSource0); EXTI_InitStruct.EXTI_Line = EXTI_Line0; EXTI_InitStruct.EXTI_Mode = EXTI_Mode_Interrupt; EXTI_InitStruct.EXTI_Trigger = EXTI_Trigger_Rising_Falling; EXTI_InitStruct.EXTI_LineCmd = ENABLE; EXTI_Init(&EXTI_InitStruct); NVIC_InitStruct.NVIC_IRQChannel = EXTI0_IRQn; NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 0x00; NVIC_InitStruct.NVIC_IRQChannelSubPriority = 0x00; NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStruct); } int main(void) { SystemInit(); init_gpio(); init_timer(); init_exti(); while (1) { // 等待按键中断 } } ``` 当您按下按键时,它会记录按键按下的时间,并当您释放按键时,它会计算出按键按下的时间,并将其打印到串口终端上。请注意,此代码中的时间以毫秒为单位进行计算,并使用 TIM2 定时器来实现计时和计数。

使用基本定时器来准确识别按键按下的具体时间

好的,基本定时器可以用来实现精确的时间计数。以下是一个示例代码: ```c // 定义变量 uint32_t buttonPressedTime = 0; uint32_t buttonReleasedTime = 0; uint32_t buttonDuration = 0; // 配置基本定时器 TIM_HandleTypeDef htim; void TIM_Config(void) { htim.Instance = TIM6; htim.Init.Prescaler = 0; htim.Init.CounterMode = TIM_COUNTERMODE_UP; htim.Init.Period = 0xFFFF; HAL_TIM_Base_Init(&htim); HAL_TIM_Base_Start_IT(&htim); } // 配置外部中断 GPIO_InitTypeDef GPIO_InitStruct; void EXTI_Config(void) { __HAL_RCC_GPIOx_CLK_ENABLE(); GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Pin = GPIO_PIN_x; HAL_GPIO_Init(GPIOx, &GPIO_InitStruct); HAL_NVIC_SetPriority(EXTIx_IRQn, 0, 0); HAL_NVIC_EnableIRQ(EXTIx_IRQn); } // 外部中断回调函数 void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { if (GPIO_Pin == GPIO_PIN_x) { if (HAL_GPIO_ReadPin(GPIOx, GPIO_PIN_x) == GPIO_PIN_RESET) { // 按键按下 buttonPressedTime = __HAL_TIM_GET_COUNTER(&htim); } else { // 按键释放 buttonReleasedTime = __HAL_TIM_GET_COUNTER(&htim); buttonDuration = buttonReleasedTime - buttonPressedTime; // 将按键按下时间通过串口发送给电脑 char buffer[20]; snprintf(buffer, sizeof(buffer), "Button pressed for %d ms\n", buttonDuration); HAL_UART_Transmit(&huart, (uint8_t*)buffer, strlen(buffer), HAL_MAX_DELAY); } } } // 定时器中断回调函数,用于更新定时器计数器 void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { if (htim == &htim) { __HAL_TIM_SET_COUNTER(&htim, 0); } } ``` 在以上代码中,我们使用了基本定时器`TIM6`来计数按键按下时间和按键释放时间的差值。在按键按下时,将当前计数器的值存储到`buttonPressedTime`变量中。在按键释放时,将当前计数器的值存储到`buttonReleasedTime`变量中,并计算出按键按下的时间`buttonDuration`。在定时器中断回调函数中,将计数器的值清零,以便下一次计数。在外部中断回调函数中,将按键按下时间通过串口发送给电脑。 希望能对您有所帮助!

相关推荐

最新推荐

recommend-type

单片机:c语言实现秒表计数(按键开始,结束,重置)

实现秒表计数功能,使用定时器和外部中断实现。8号按键代表计时开始/结束,C号按键代表重置为0,为了演示方便,这里上限定为15秒。
recommend-type

单片机C语言程序设计:用计数器中断实现100以内的按键计数

名称:用计数器中断实现 100 以内的按键计数 说明:本例用 T0 计数器中断实现按键技术,由于计数寄存器初值为 1,因此 P3.4 引脚的每次负跳变都会触发 T0 中断,实现计数值累加。计数器的清零用外部中断 0 控制。
recommend-type

51单片机(AT89C52)一键多功能(短按、长按)

短按(按下持续时间小于3s)一次数码管显示加1,同时流水灯计数加1。长按(按下持续时间大于3s)时,数码管显示每500ms加1,同时流水灯每500ms计数加1。
recommend-type

电容式触摸按键设计参考

"电容式触摸按键设计参考 - 触摸感应按键设计指南" 本文档是Infineon Technologies的Application Note AN64846,主要针对电容式触摸感应(CAPSENSE™)技术,旨在为初次接触CAPSENSE™解决方案的硬件设计师提供指导。文档覆盖了从基础技术理解到实际设计考虑的多个方面,包括电路图设计、布局以及电磁干扰(EMI)的管理。此外,它还帮助用户选择适合自己应用的合适设备,并提供了CAPSENSE™设计的相关资源。 文档的目标受众是使用或对使用CAPSENSE™设备感兴趣的用户。CAPSENSE™技术是一种基于电容原理的触控技术,通过检测人体与传感器间的电容变化来识别触摸事件,常用于无物理按键的现代电子设备中,如智能手机、家电和工业控制面板。 在文档中,读者将了解到CAPSENSE™技术的基本工作原理,以及在设计过程中需要注意的关键因素。例如,设计时要考虑传感器的灵敏度、噪声抑制、抗干扰能力,以及如何优化电路布局以减少EMI的影响。同时,文档还涵盖了器件选择的指导,帮助用户根据应用需求挑选合适的CAPSENSE™芯片。 此外,为了辅助设计,Infineon提供了专门针对CAPSENSE™设备家族的设计指南,这些指南通常包含更详细的技术规格、设计实例和实用工具。对于寻求代码示例的开发者,可以通过Infineon的在线代码示例网页获取不断更新的PSoC™代码库,也可以通过视频培训库深入学习。 文档的目录通常会包含各个主题的章节,如理论介绍、设计流程、器件选型、硬件实施、软件配置以及故障排查等,这些章节将逐步引导读者完成一个完整的CAPSENSE™触摸按键设计项目。 通过这份指南,工程师不仅可以掌握CAPSENSE™技术的基础,还能获得实践经验,从而有效地开发出稳定、可靠的触摸感应按键系统。对于那些希望提升产品用户体验,采用先进触控技术的设计师来说,这是一份非常有价值的参考资料。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB函数调用中的调试技巧大揭秘,快速定位并解决函数调用问题

![MATLAB函数调用中的调试技巧大揭秘,快速定位并解决函数调用问题](https://ucc.alicdn.com/pic/developer-ecology/ovk2h427k2sfg_f0d4104ac212436a93f2cc1524c4512e.png?x-oss-process=image/resize,s_500,m_lfit) # 1. MATLAB函数调用的基本原理** MATLAB函数调用是通过`function`关键字定义的,其语法为: ```matlab function [output1, output2, ..., outputN] = function_na
recommend-type

LDMIA r0!,{r4 - r11}

LDMIA是ARM汇编语言中的一条指令,用于从内存中加载多个寄存器的值。具体来说,LDMIA r0!,{r4 r11}的意思是从内存地址r0开始,连续加载r4到r11这8个寄存器的值[^1]。 下面是一个示例代码,演示了如何使用LDMIA指令加载寄器的值: ```assembly LDMIA r0!, {r4-r11} ;从内存地址r0开始,连续加载r4到r11这8个寄存器的值 ``` 在这个示例中,LDMIA指令将会从内存地址r0开始,依次将内存中的值加载到r4、r5、r6、r7、r8、r9、r10和r11这8个寄存器中。
recommend-type

西门子MES-系统规划建议书(共83页).docx

"西门子MES系统规划建议书是一份详细的文档,涵盖了西门子在MES(制造执行系统)领域的专业见解和规划建议。文档由西门子工业自动化业务部旗下的SISW(西门子工业软件)提供,该部门是全球PLM(产品生命周期管理)软件和SIMATIC IT软件的主要供应商。文档可能包含了 MES系统如何连接企业级管理系统与生产过程,以及如何优化生产过程中的各项活动。此外,文档还提及了西门子工业业务领域的概况,强调其在环保技术和工业解决方案方面的领导地位。" 西门子MES系统是工业自动化的重要组成部分,它扮演着生产过程管理和优化的角色。通过集成的解决方案,MES能够提供实时的生产信息,确保制造流程的高效性和透明度。MES系统规划建议书可能会涉及以下几个关键知识点: 1. **MES系统概述**:MES系统连接ERP(企业资源计划)和底层控制系统,提供生产订单管理、设备监控、质量控制、物料跟踪等功能,以确保制造过程的精益化。 2. **西门子SIMATIC IT**:作为西门子的MES平台,SIMATIC IT提供了广泛的模块化功能,适应不同行业的生产需求,支持离散制造业、流程工业以及混合型生产环境。 3. **产品生命周期管理(PLM)**:PLM软件用于管理产品的全生命周期,从概念设计到报废,强调协作和创新。SISW提供的PLM解决方案可能包括CAD(计算机辅助设计)、CAM(计算机辅助制造)、CAE(计算机辅助工程)等工具。 4. **工业自动化**:西门子工业自动化业务部提供自动化系统、控制器和软件,提升制造业的效率和灵活性,包括生产线自动化、过程自动化和系统整体解决方案。 5. **全球市场表现**:SISW在全球范围内拥有大量客户,包括许多世界500强企业,表明其解决方案在业界的广泛应用和认可。 6. **中国及亚洲市场**:SISW在中国和亚洲其他新兴市场具有领先地位,特别是在CAD领域,反映了其在这些地区的重要影响力。 7. **案例研究**:文档可能包含实际案例,如通用汽车的全球产品开发项目,展示SISW技术在大型复杂项目中的应用能力。 这份建议书不仅对理解西门子MES系统有重要作用,也为企业在选择和实施MES系统时提供了策略性指导,有助于企业规划和优化其生产流程,实现更高效的制造业运营。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

掌握MATLAB函数调用性能优化秘籍,提升函数调用效率

![掌握MATLAB函数调用性能优化秘籍,提升函数调用效率](https://www.iar.com/siteassets/china/china-learn-programming-complier-5.png) # 1. MATLAB函数调用性能优化概述 MATLAB函数调用性能优化是提高MATLAB应用程序性能的关键。本文将全面介绍MATLAB函数调用性能优化的原理、方法和实践,帮助读者深入理解和优化MATLAB函数调用,从而提升应用程序性能。 本概述将涵盖以下内容: * MATLAB函数调用性能优化的重要性 * MATLAB函数调用性能优化的目标和范围 * MATLAB函数调用性