编写基于DCGAN的滚动轴承故障诊断代码

时间: 2024-05-16 22:15:31 浏览: 16
首先,需要准备一个包含滚动轴承正常和故障状态的数据集。可以使用一些常见的故障类型,如内圈故障、外圈故障、滚动体故障等。 接下来,我们可以使用DCGAN来训练一个生成器,使其能够生成与正常和故障状态相似的滚动轴承图像。以下是基于PyTorch的DCGAN示例代码: ```python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torchvision import datasets, transforms import torchvision.utils as vutils # 定义生成器 class Generator(nn.Module): def __init__(self, ngpu): super(Generator, self).__init__() self.ngpu = ngpu self.main = nn.Sequential( nn.ConvTranspose2d(100, 64 * 8, 4, 1, 0, bias=False), nn.BatchNorm2d(64 * 8), nn.ReLU(True), nn.ConvTranspose2d(64 * 8, 64 * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(64 * 4), nn.ReLU(True), nn.ConvTranspose2d(64 * 4, 64 * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(64 * 2), nn.ReLU(True), nn.ConvTranspose2d(64 * 2, 64, 4, 2, 1, bias=False), nn.BatchNorm2d(64), nn.ReLU(True), nn.ConvTranspose2d(64, 1, 4, 2, 1, bias=False), nn.Tanh() ) def forward(self, input): return self.main(input) # 定义鉴别器 class Discriminator(nn.Module): def __init__(self, ngpu): super(Discriminator, self).__init__() self.ngpu = ngpu self.main = nn.Sequential( nn.Conv2d(1, 64, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64, 64 * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(64 * 2), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64 * 2, 64 * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(64 * 4), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64 * 4, 64 * 8, 4, 2, 1, bias=False), nn.BatchNorm2d(64 * 8), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64 * 8, 1, 4, 1, 0, bias=False), nn.Sigmoid() ) def forward(self, input): return self.main(input) # 初始化参数 ngpu = 1 nz = 100 ngf = 64 ndf = 64 lr = 0.0002 beta1 = 0.5 batch_size = 64 num_epochs = 50 # 加载数据集 transform = transforms.Compose([ transforms.Grayscale(1), transforms.Resize(64), transforms.CenterCrop(64), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ]) dataset = datasets.ImageFolder('path/to/dataset', transform=transform) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) # 初始化网络 netG = Generator(ngpu).cuda() netD = Discriminator(ngpu).cuda() # 定义损失函数和优化器 criterion = nn.BCELoss() optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999)) optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999)) # 训练模型 for epoch in range(num_epochs): for i, data in enumerate(dataloader, 0): # 训练鉴别器 netD.zero_grad() real = data[0].cuda() b_size = real.size(0) label = torch.full((b_size,), 1, dtype=torch.float, device='cuda') output = netD(real).view(-1) errD_real = criterion(output, label) errD_real.backward() D_x = output.mean().item() noise = torch.randn(b_size, nz, 1, 1, device='cuda') fake = netG(noise) label.fill_(0) output = netD(fake.detach()).view(-1) errD_fake = criterion(output, label) errD_fake.backward() D_G_z1 = output.mean().item() errD = errD_real + errD_fake optimizerD.step() # 训练生成器 netG.zero_grad() label.fill_(1) output = netD(fake).view(-1) errG = criterion(output, label) errG.backward() D_G_z2 = output.mean().item() optimizerG.step() # 打印损失信息 if i % 100 == 0: print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f' % (epoch, num_epochs, i, len(dataloader), errD.item(), errG.item(), D_x, D_G_z1, D_G_z2)) # 保存生成器的输出图片 if epoch % 10 == 0: vutils.save_image(fake.detach(), 'output/fake_samples_epoch_%03d.png' % epoch, normalize=True) # 保存模型参数 torch.save(netG.state_dict(), 'netG.pth') torch.save(netD.state_dict(), 'netD.pth') ``` 训练完成后,我们可以使用生成器来生成一些滚动轴承图像,并使用鉴别器来判断它们是否为正常或故障状态。如果生成的图像与故障状态相似,则可以诊断出故障。

相关推荐

最新推荐

recommend-type

基于SpringBoot的代码生成器的设计和实现.doc

本文在基于减少Java Web开发者代码编写量的需求上,使用Java EE技术和Spring Boot框架设计了一个B/S模式的代码生成器系统。本设计包含了以下3个主要内容:1. 用户对数据库的实体模型进行设计和管理;2. 系统根据实体...
recommend-type

基于FPGA的PWM的Verilog代码

该设计使用Verilog语言编写,实现了基于FPGA的PWM控制器,通过四个按键控制计数器最大值和比较强输入基数,实现脉冲宽度的加减和PWM周期的增加与减少。 首先,让我们了解一下PWM的概念。PWM(Pulse Width ...
recommend-type

使用 prometheus python 库编写自定义指标的方法(完整代码)

创建一个名为 `app.py` 的文件,并编写如下代码: ```python from flask import Flask app = Flask(__name__) @app.route('/metrics') def hello(): return 'metrics' if __name__ == '__main__': app.run(host...
recommend-type

verilog_代码编写软件UE_高亮

Verilog 代码高亮显示在 UE 编辑器中的实现方法 在 UE 编辑器中,想要高亮显示 Verilog 代码,需要进行一定的配置。下面是实现 Verilog 代码高亮显示的步骤和相关知识点。 UE 编辑器的高亮显示配置 在 UE 编辑器...
recommend-type

分别用marquee和div+js实现首尾相连循环滚动效果,仅3行代码

在提供的代码中,`<marquee>`标签设置了`behavior="scroll"`,表示内容会持续滚动;`contenteditable="true"`允许用户编辑内容;`onstart`属性中的JavaScript代码`this.firstChild.innerHTML+=this.firstChild....
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。