编写基于DCGAN的滚动轴承故障诊断代码
时间: 2024-05-16 10:15:31 浏览: 95
首先,需要准备一个包含滚动轴承正常和故障状态的数据集。可以使用一些常见的故障类型,如内圈故障、外圈故障、滚动体故障等。
接下来,我们可以使用DCGAN来训练一个生成器,使其能够生成与正常和故障状态相似的滚动轴承图像。以下是基于PyTorch的DCGAN示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
import torchvision.utils as vutils
# 定义生成器
class Generator(nn.Module):
def __init__(self, ngpu):
super(Generator, self).__init__()
self.ngpu = ngpu
self.main = nn.Sequential(
nn.ConvTranspose2d(100, 64 * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d(64 * 8),
nn.ReLU(True),
nn.ConvTranspose2d(64 * 8, 64 * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(64 * 4),
nn.ReLU(True),
nn.ConvTranspose2d(64 * 4, 64 * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(64 * 2),
nn.ReLU(True),
nn.ConvTranspose2d(64 * 2, 64, 4, 2, 1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(True),
nn.ConvTranspose2d(64, 1, 4, 2, 1, bias=False),
nn.Tanh()
)
def forward(self, input):
return self.main(input)
# 定义鉴别器
class Discriminator(nn.Module):
def __init__(self, ngpu):
super(Discriminator, self).__init__()
self.ngpu = ngpu
self.main = nn.Sequential(
nn.Conv2d(1, 64, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 64 * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(64 * 2),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64 * 2, 64 * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(64 * 4),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64 * 4, 64 * 8, 4, 2, 1, bias=False),
nn.BatchNorm2d(64 * 8),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64 * 8, 1, 4, 1, 0, bias=False),
nn.Sigmoid()
)
def forward(self, input):
return self.main(input)
# 初始化参数
ngpu = 1
nz = 100
ngf = 64
ndf = 64
lr = 0.0002
beta1 = 0.5
batch_size = 64
num_epochs = 50
# 加载数据集
transform = transforms.Compose([
transforms.Grayscale(1),
transforms.Resize(64),
transforms.CenterCrop(64),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
dataset = datasets.ImageFolder('path/to/dataset', transform=transform)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# 初始化网络
netG = Generator(ngpu).cuda()
netD = Discriminator(ngpu).cuda()
# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
# 训练模型
for epoch in range(num_epochs):
for i, data in enumerate(dataloader, 0):
# 训练鉴别器
netD.zero_grad()
real = data[0].cuda()
b_size = real.size(0)
label = torch.full((b_size,), 1, dtype=torch.float, device='cuda')
output = netD(real).view(-1)
errD_real = criterion(output, label)
errD_real.backward()
D_x = output.mean().item()
noise = torch.randn(b_size, nz, 1, 1, device='cuda')
fake = netG(noise)
label.fill_(0)
output = netD(fake.detach()).view(-1)
errD_fake = criterion(output, label)
errD_fake.backward()
D_G_z1 = output.mean().item()
errD = errD_real + errD_fake
optimizerD.step()
# 训练生成器
netG.zero_grad()
label.fill_(1)
output = netD(fake).view(-1)
errG = criterion(output, label)
errG.backward()
D_G_z2 = output.mean().item()
optimizerG.step()
# 打印损失信息
if i % 100 == 0:
print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
% (epoch, num_epochs, i, len(dataloader),
errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))
# 保存生成器的输出图片
if epoch % 10 == 0:
vutils.save_image(fake.detach(), 'output/fake_samples_epoch_%03d.png' % epoch, normalize=True)
# 保存模型参数
torch.save(netG.state_dict(), 'netG.pth')
torch.save(netD.state_dict(), 'netD.pth')
```
训练完成后,我们可以使用生成器来生成一些滚动轴承图像,并使用鉴别器来判断它们是否为正常或故障状态。如果生成的图像与故障状态相似,则可以诊断出故障。
阅读全文