YOLOv5对CIOU损失函数改进的代码
时间: 2023-09-12 16:06:31 浏览: 226
以下是YOLOv5对CIOU损失函数改进的代码,供您参考:
```python
import torch.nn.functional as F
from utils.general import box_iou
def compute_ciou_loss(pred, gt, eps=1e-7):
"""
Args:
pred: 预测的边界框,shape为[N, 4], [x, y, w, h]
gt: 真实的边界框,shape为[N, 4], [x, y, w, h]
"""
# 将边界框的坐标转换为左上角和右下角的点的坐标
pred_xy = pred[:, :2]
pred_wh = pred[:, 2:]
pred_mins = pred_xy - pred_wh / 2.0
pred_maxs = pred_xy + pred_wh / 2.0
gt_xy = gt[:, :2]
gt_wh = gt[:, 2:]
gt_mins = gt_xy - gt_wh / 2.0
gt_maxs = gt_xy + gt_wh / 2.0
# 计算真实边界框和预测边界框的交集
intersect_mins = torch.max(pred_mins, gt_mins)
intersect_maxs = torch.min(pred_maxs, gt_maxs)
intersect_wh = torch.clamp(intersect_maxs - intersect_mins, min=0)
intersect_area = intersect_wh[:, 0] * intersect_wh[:, 1]
# 计算真实边界框和预测边界框的并集
pred_area = pred_wh[:, 0] * pred_wh[:, 1]
gt_area = gt_wh[:, 0] * gt_wh[:, 1]
union_area = pred_area + gt_area - intersect_area
# 计算IoU
iou = intersect_area / (union_area + eps)
# 计算中心点的距离
center_distance = torch.sum(torch.pow((pred_xy - gt_xy), 2), axis=1)
# 计算最小外接矩形的对角线长度
enclose_mins = torch.min(pred_mins, gt_mins)
enclose_maxs = torch.max(pred_maxs, gt_maxs)
enclose_wh = torch.clamp(enclose_maxs - enclose_mins, min=0)
enclose_diagonal = torch.sum(torch.pow(enclose_wh, 2), axis=1)
# 计算CIOU
ciou = iou - center_distance / enclose_diagonal
# 计算损失
ciou_loss = 1 - ciou
return ciou_loss
```
在YOLOv5的损失函数中,我们可以使用该函数来计算CIOU损失。
阅读全文