json_classes_labels = json.dumps(train_data.class_to_idx) print() print("categories labels below:") print(json_classes_labels) # print classes with labels in json format print() # save categories labels to json file with open("../dist/labels.json", "w+") as f: f.write(json_classes_labels)
时间: 2024-02-19 17:01:31 浏览: 81
这段代码将训练集中的类别和对应的标签转换为json格式,并输出到控制台。接着将json格式的类别标签保存到文件中,方便后续的预测和展示。其中,class_to_idx是一个字典类型,表示类别名和对应的标签。利用json.dumps函数可以将字典类型转换为json格式字符串,方便输出和保存。最后,将json格式的类别标签保存到文件中。
相关问题
import os import pickle import cv2 import matplotlib.pyplot as plt import numpy as np from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout from keras.models import Sequential from keras.optimizers import adam_v2 from keras_preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder, OneHotEncoder, LabelBinarizer def load_data(filename=r'/root/autodl-tmp/RML2016.10b.dat'): with open(r'/root/autodl-tmp/RML2016.10b.dat', 'rb') as p_f: Xd = pickle.load(p_f, encoding="latin-1") # 提取频谱图数据和标签 spectrograms = [] labels = [] train_idx = [] val_idx = [] test_idx = [] np.random.seed(2016) a = 0 for (mod, snr) in Xd: X_mod_snr = Xd[(mod, snr)] for i in range(X_mod_snr.shape[0]): data = X_mod_snr[i, 0] frequency_spectrum = np.fft.fft(data) power_spectrum = np.abs(frequency_spectrum) ** 2 spectrograms.append(power_spectrum) labels.append(mod) train_idx += list(np.random.choice(range(a * 6000, (a + 1) * 6000), size=3600, replace=False)) val_idx += list(np.random.choice(list(set(range(a * 6000, (a + 1) * 6000)) - set(train_idx)), size=1200, replace=False)) a += 1 # 数据预处理 # 1. 将频谱图的数值范围调整到0到1之间 spectrograms_normalized = spectrograms / np.max(spectrograms) # 2. 对标签进行独热编码 label_binarizer = LabelBinarizer() labels_encoded= label_binarizer.fit_transform(labels) # transfor the label form to one-hot # 3. 划分训练集、验证集和测试集 # X_train, X_temp, y_train, y_temp = train_test_split(spectrograms_normalized, labels_encoded, test_size=0.15, random_state=42) # X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42) spectrogramss = np.array(spectrograms_normalized) print(spectrogramss.shape) labels = np.array(labels) X = np.vstack(spectrogramss) n_examples = X.shape[0] test_idx = list(set(range(0, n_examples)) - set(train_idx) - set(val_idx)) np.random.shuffle(train_idx) np.random.shuffle(val_idx) np.random.shuffle(test_idx) X_train = X[train_idx] X_val = X[val_idx] X_test = X[test_idx] print(X_train.shape) print(X_val.shape) print(X_test.shape) y_train = labels[train_idx] y_val = labels[val_idx] y_test = labels[test_idx] print(y_train.shape) print(y_val.shape) print(y_test.shape) # X_train = np.expand_dims(X_train,axis=-1) # X_test = np.expand_dims(X_test,axis=-1) # print(X_train.shape) return (mod, snr), (X_train, y_train), (X_val, y_val), (X_test, y_test) 这是我的数据预处理代码
你的数据预处理代码看起来很完整。它首先加载pickle文件,然后提取频谱图数据和标签。接下来,它对频谱图数据进行归一化处理,并对标签进行独热编码。最后,它将数据集划分为训练集、验证集和测试集,并返回这些数据集。
在代码中,你还有一些注释掉的代码段,例如对数据集进行划分的部分。如果你打算使用这些划分代码,你可以取消注释相应的行。另外,如果你的频谱图数据维度是二维的,你可能需要使用`np.expand_dims`函数将其扩展为三维,以便与Conv2D层兼容。
如果你还有其他问题或需要进一步帮助,请随时问我。
# 定义数据集读取器 def load_data(mode='train'): # 数据文件 datafile = './data/data116648/mnist.json.gz' print('loading mnist dataset from {} ......'.format(datafile)) data = json.load(gzip.open(datafile)) train_set, val_set, eval_set = data # 数据集相关参数,图片高度IMG_ROWS, 图片宽度IMG_COLS IMG_ROWS = 28 IMG_COLS = 28 if mode == 'train': imgs = train_set[0] labels = train_set[1] elif mode == 'valid': imgs = val_set[0] labels = val_set[1] elif mode == 'eval': imgs = eval_set[0] labels = eval_set[1] imgs_length = len(imgs) assert len(imgs) == len(labels), \ "length of train_imgs({}) should be the same as train_labels({})".format( len(imgs), len(labels)) index_list = list(range(imgs_length)) # 读入数据时用到的batchsize BATCHSIZE = 100 # 定义数据生成器 def data_generator(): if mode == 'train': random.shuffle(index_list) imgs_list = [] labels_list = [] for i in index_list: img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32') img_trans=-img #转变颜色 label = np.reshape(labels[i], [1]).astype('int64') label_trans=label imgs_list.append(img) imgs_list.append(img_trans) labels_list.append(label) labels_list.append(label_trans) if len(imgs_list) == BATCHSIZE: yield np.array(imgs_list), np.array(labels_list) imgs_list = [] labels_list = [] # 如果剩余数据的数目小于BATCHSIZE, # 则剩余数据一起构成一个大小为len(imgs_list)的mini-batch if len(imgs_list) > 0: yield np.array(imgs_list), np.array(labels_list) return data_generator
这段代码定义了一个数据集读取器load_data,用于读取MNIST数据集。具体实现如下:
- 首先从文件中加载MNIST数据集,数据集文件为'mnist.json.gz',其中包含了训练集、验证集和测试集的图像和标签数据。
- 根据不同的mode参数,从数据集中选择相应的数据集,包括训练集、验证集和测试集。
- 定义了一个数据生成器data_generator,用于生成mini-batch大小的图像数据和标签数据。其中,通过random.shuffle(index_list)实现数据集的随机打乱,防止模型过拟合。另外,为了增加数据的多样性,对于每个图像数据,还进行了颜色反转的处理。
- 最后,返回数据生成器。
阅读全文