matlab estimated_error_x(k,:)=[x(1,1)-x_true_robot(1);x_d(1,1)-x_true_robot(1)];

时间: 2023-10-25 11:10:35 浏览: 36
这段 Matlab 代码的作用是计算估计误差。其中,x(1,1) 表示估计值,x_true_robot(1) 表示真实值,两者相减即为估计误差。同样地,x_d(1,1) 是估计速度值,x_true_robot(1) 是真实速度值,两者相减即为速度估计误差。这段代码将估计误差和速度估计误差存储在 estimated_error_x(k,:) 中。其中,k 表示时间步数,决定了估计误差和速度估计误差的大小。
相关问题

DWAPlannerROS: # Robot Configuration Parameters - Kobuki max_vel_x: 0.20 min_vel_x: -0.20 max_vel_y: 0.20 min_vel_y: -0.20 max_vel_trans: 0.2 min_vel_trans: 0.13 max_vel_theta: 1.4 min_vel_theta: 0.8 acc_lim_x: 2.5 acc_lim_theta: 3.0 acc_lim_y: 2.5 xy_goal_tolerance: 0.15 yaw_goal_tolerance: 0.15 latch_xy_goal_tolerance: false # Forward Simulation Parameters sim_time: 2.0 vx_samples: 10 vy_samples: 0 vth_samples: 20 controller_frequency: 10.0 # Trajectory Scoring Parameters path_distance_bias: 32.0 goal_distance_bias: 24.0 occdist_scale: 0.03 forward_point_distance: 0.325 stop_time_buffer: 0.2 scaling_speed: 0.25 max_scaling_factor: 0.2 # Oscillation Prevention Parameters oscillation_reset_dist: 0.05 # Debugging publish_traj_pc : true publish_cost_grid_pc: true # Differential-drive robot configuration - necessary? holonomic_robot: true添加一下详细的注释

这是一个DWAPlannerROS的参数配置文件,用于机器人的路径规划。以下是对每个参数的注释: - max_vel_x: 机器人可以达到的最大线速度。 - min_vel_x: 机器人可以达到的最小线速度。 - max_vel_y: 机器人可以达到的最大侧向速度。 - min_vel_y: 机器人可以达到的最小侧向速度。 - max_vel_trans: 机器人可以达到的最大平移速度。 - min_vel_trans: 机器人可以达到的最小平移速度。 - max_vel_theta: 机器人可以达到的最大旋转速度。 - min_vel_theta: 机器人可以达到的最小旋转速度。 - acc_lim_x: 机器人可以达到的最大线加速度。 - acc_lim_theta: 机器人可以达到的最大旋转加速度。 - acc_lim_y: 机器人可以达到的最大侧向加速度。 - xy_goal_tolerance: 机器人到达目标点时,允许的位置误差。 - yaw_goal_tolerance: 机器人到达目标点时,允许的角度误差。 - latch_xy_goal_tolerance: 是否在到达目标点后保持位置误差小于xy_goal_tolerance。 - sim_time: 进行路径规划时,模拟机器人运动的时间。 - vx_samples: 机器人在x轴方向的速度采样数。 - vy_samples: 机器人在y轴方向的速度采样数。 - vth_samples: 机器人的旋转速度采样数。 - controller_frequency: 控制器的执行频率。 - path_distance_bias: 机器人在路径规划时,考虑到路径距离的权重。 - goal_distance_bias: 机器人在路径规划时,考虑到目标距离的权重。 - occdist_scale: 机器人在路径规划时,考虑到障碍物距离的权重。 - forward_point_distance: 机器人在路径规划时,考虑到前方距离的权重。 - stop_time_buffer: 机器人在路径规划时,考虑到停止距离的缓冲时间。 - scaling_speed: 机器人在路径规划时,考虑到速度的缩放因子。 - max_scaling_factor: 机器人在路径规划时,考虑到速度的最大缩放因子。 - oscillation_reset_dist: 机器人在路径规划时,考虑到振荡重置的距离。 - publish_traj_pc: 是否发布路径规划的点云信息。 - publish_cost_grid_pc: 是否发布代价地图的点云信息。 - holonomic_robot: 是否为全向移动的机器人(如小车)。

请解释这段代码的含义“TebLocalPlannerROS: odom_topic: odom map_frame: map # Trajectory teb_autosize: True dt_ref: 0.3 # Desired trajectory time resolution dt_hysteresis: 0.03 #The hysteresis that automatically adjusts the size according to the current time resolution, usually approx. It is recommended to use 10% of dt ref. global_plan_overwrite_orientation: True # Cover the direction of the local sub-goals provided by the global planner allow_init_with_backwards_motion: False max_global_plan_lookahead_dist: 3.0 # Specify the maximum length of the global plan subset considered for optimization feasibility_check_no_poses: 5 # default:4 The number of attitude feasibility analysis for each sampling interval, # Robot max_vel_x: 0.2 #max_vel_x (double, default: 0.4) max_vel_x_backwards: 0.07 #max_vel_x_backwards (double, default: 0.2) acc_lim_x: 1.0 #acc_lim_x (double, default: 0.5) max_vel_theta: 1.0 #max_vel_theta (double, default: 0.3) acc_lim_theta: 0.5 #acc_lim_theta (double, default: 0.5) min_turning_radius: 0.38 # min_turning_radius (double, default: 0.0) diff-drive: 0 max_steer_angle = 45 度,car_length = 0.35 ----> Redius_min= 0.35”

这段代码是一个ROS的配置文件,用于配置TebLocalPlannerROS局部路径规划器的参数。 具体含义如下: - odom_topic: 里程计话题的名称为 odom。 - map_frame: 地图坐标系的名称为 map。 - teb_autosize: 是否自动调整轨迹的长度。 - dt_ref: 规划轨迹的参考时间分辨率。 - dt_hysteresis: 自动调整轨迹长度的滞后时间,通常为参考时间分辨率的10%。 - global_plan_overwrite_orientation: 是否覆盖全局规划器提供的局部目标点的方向。 - allow_init_with_backwards_motion: 是否允许以后退的方式开始规划。 - max_global_plan_lookahead_dist: 全局规划器提供的路径子集的最大长度。 - feasibility_check_no_poses: 每个采样间隔进行姿态可行性分析的次数。 - max_vel_x: 最大线速度。 - max_vel_x_backwards: 最大后退速度。 - acc_lim_x: 最大线加速度。 - max_vel_theta: 最大角速度。 - acc_lim_theta: 最大角加速度。 - min_turning_radius: 最小转弯半径。 - diff-drive: 是否是差速机器人。 - max_steer_angle: 最大转向角度。 - car_length: 车辆长度。 - Redius_min: 最小转弯半径。

相关推荐

BEGIN REGION Servo Power //Servo Power IF "AlwaysTRUE" AND "Control Voltage On" THEN "Robot1 Power for Servo 1-2" := "Robot2 Power for Servo 3-4" := "Robot3 Power for Servo 5-6" := "Robot4 Power for Travelling Servo 7-8" := "Robot5 Power for Travelling Servo 9-10" := true; ELSE "Robot1 Power for Servo 1-2" := "Robot2 Power for Servo 3-4" := "Robot3 Power for Servo 5-6" := "Robot4 Power for Travelling Servo 7-8" := "Robot5 Power for Travelling Servo 9-10" := FALSE; END_IF; //Servo Limit Sensor - 启用硬限位 IF "AlwaysTRUE" AND NOT "Buzzer Stop Button" THEN "DB1002_Control Status Epos".Robot1.X.CamAct := "DB1002_Control Status Epos".Robot1.Z.CamAct := "DB1002_Control Status Epos".Robot2.X.CamAct := "DB1002_Control Status Epos".Robot2.Z.CamAct := "DB1002_Control Status Epos".Robot3.X.CamAct := "DB1002_Control Status Epos".Robot3.Z.CamAct := "DB1002_Control Status Epos".Robot4.X.CamAct := "DB1002_Control Status Epos".Robot4.Z.CamAct := "DB1002_Control Status Epos".Robot5.X.CamAct := "DB1002_Control Status Epos".Robot5.Z.CamAct := "DB1002_Control Status Epos".Load.X.CamAct := "DB1002_Control Status Epos".UnLoad.X.CamAct := TRUE; ELSE "DB1002_Control Status Epos".Robot1.X.CamAct := "DB1002_Control Status Epos".Robot1.Z.CamAct := "DB1002_Control Status Epos".Robot2.X.CamAct := "DB1002_Control Status Epos".Robot2.Z.CamAct := "DB1002_Control Status Epos".Robot3.X.CamAct := "DB1002_Control Status Epos".Robot3.Z.CamAct := "DB1002_Control Status Epos".Robot4.X.CamAct := "DB1002_Control Status Epos".Robot4.Z.CamAct := "DB1002_Control Status Epos".Robot5.X.CamAct := "DB1002_Control Status Epos".Robot5.Z.CamAct := "DB1002_Control Status Epos".Load.X.CamAct := "DB1002_Control Status Epos".UnLoad.X.CamAct := false; END_IF; //Robot1 X Power And Reset "FC192_Robot_Power"("E-Stop" := "DB1002_Control Status Epos".Robot1.X."E-Stop", Fault := "DB1001_Actual Status Epos".Robot1.X.Fault, Ready := "DB1001_Actual Status Epos".Robot1.X.OFF1_Ready, "Alarm Reset" := "Alarm Reset", Off1 => "DB1002_Control Status Epos".Robot1.X.Off1, "Enable Temp" := "DB1003_Servo Button"."Robot1 X"."Servo enabled Temp", "Enable Reset" := "DB1003_Servo Button"."Robot1 X"."Servo enabled Reset", "Time" := "DB3_Time".Robot1.T65);

最新推荐

recommend-type

PROBOT Anno手眼标定步骤(easy_handeye-眼在外).pdf

3. 配置robot的参数,包括机械臂的frame和末端的frame 六、手眼标定步骤(外参) 手眼标定步骤包括以下几个步骤: 1. 将标定板固定在机械臂上面,移动到相机视野的中心位置 2. 点击next pose,出现绿色就当前位姿...
recommend-type

ROS基础知识学习笔记(9)—Robot_Localization

ROS基础知识学习笔记第九篇主要关注的是`Robot_Localization`包的使用,这是一个在ROS(Robot Operating System)中用于机器人定位的重要工具。通过本教程,我们可以了解如何利用虚拟传感器,如虚拟里程计和虚拟激光...
recommend-type

YRC1000micro 使用说明书_3-1.pdf

**1. 系统概述** R-CTO-A222-C<3>YRC1000micro是YRC1000micro控制器的核心型号,它提供了高效能的运动控制算法,确保机器人在各种任务中的平稳运行。控制器的设计紧凑,适合空间有限的工作环境,同时其高集成度降低...
recommend-type

FANUC_Robot_R-30iA_控制装置_Handing_Tool_操作说明书-已解锁.pdf

《FANUC Robot R-30iA 控制装置 Handing Tool 操作说明书》是针对FANUC机器人中Handing Tool部分的详细指南,旨在帮助用户安全有效地操作和使用FANUC机器人。这份文档适用于7DA4/7DA5系列的机器人系统。 首先,用户...
recommend-type

十种常见电感线圈电感量计算公式详解

本文档详细介绍了十种常见的电感线圈电感量的计算方法,这对于开关电源电路设计和实验中的参数调整至关重要。计算方法涉及了圆截面直导线、同轴电缆线、双线制传输线、两平行直导线间的互感以及圆环的电感。以下是每种类型的电感计算公式及其适用条件: 1. **圆截面直导线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi r} \) (在 \( l >> r \) 的条件下) - \( l \) 表示导线长度,\( r \) 表示导线半径,\( \mu_0 \) 是真空导磁率。 2. **同轴电缆线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi (r1 + r2)} \) (忽略外导体厚度) - \( r1 \) 和 \( r2 \) 分别为内外导体直径。 3. **双线制传输线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi^2 D \ln(\frac{D+r}{r})} \) (条件:\( l >> D, D >> r \)) - \( D \) 是两导线间距离。 4. **两平行直导线的互感** - 公式:\( M = \frac{\mu_0 l}{2\pi r} \ln(\frac{D}{d}) \) (条件:\( D >> r \)) - \( d \) 是单个导线半径,互感与距离 \( D \) 有关。 5. **圆环的电感** - 公式:\( L = \mu_0 R \ln(\frac{R}{r}) \) - \( R \) 是圆环的外半径,\( r \) 是圆环截面的半径。 在电路设计中,计算这些电感值有助于确保电路性能的准确性和稳定性。值得注意的是,实际应用中还需要考虑线圈的形状、材料(包括磁芯的相对导磁率)和外部因素,如磁珠的影响。此外,这些公式通常是在理想化情况下给出的,实际应用中可能需要考虑非线性效应和频率依赖性。对于复杂线圈,可能需要借助于电磁场仿真软件进行精确计算。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【树结构遍历操作】:JavaScript深度优先与广度优先算法详解

![js+数据结构更改](https://www.freecodecamp.org/news/content/images/2021/04/JavaScript-splice-method.png) # 1. 树结构遍历操作概述 在计算机科学中,树结构是表示数据的一种重要方式,尤其在处理层次化数据时显得尤为重要。树结构遍历操作是树上的核心算法,它允许我们访问树中每一个节点一次。这种操作广泛应用于搜索、排序、以及各种优化问题中。本章将概览树结构遍历的基本概念、方法和实际应用场景。 ## 1.1 树结构的定义与特性 树是由一个集合作为节点和一组连接这些节点的边构成的图。在树结构中,有一个特殊
recommend-type

年份是否为闰年C语言判断

在C语言中,判断一个年份是否为闰年的标准有以下几个规则: 1. **普通闰年**:能被4整除但不能被100整除的年份是普通闰年,如2004年就是闰年。 2. **世纪闰年**:能被400整除的年份也是闰年,但如果是整百数(例如1900年),则需要满足能被400整除才能是闰年。 下面是简单的C语言函数来判断一个年份是否是闰年: ```c #include <stdbool.h> bool is_leap_year(int year) { if (year % 4 != 0) { // 如果不是4的倍数,则直接返回false return false; }
recommend-type

军用车辆:CAN总线的集成与优势

本文探讨了CAN总线在军用车辆中的应用,针对军用车辆电子系统的发展趋势和需求,着重分析了将CAN总线技术引入军用车辆的必要性和可行性。军用车辆的电子化程度日益提高,电子设备的集成和资源共享成为关键,以提升整体性能和作战效能。CAN总线(Controller Area Network)作为一种成功的民用汽车通信技术,因其模块化、标准化、小型化以及高效能的特点,被提出作为军用车辆的潜在解决方案。 首先,文章指出军用车辆的数据通信需求不同于一般计算机网络,它强调实时性、可靠性、短帧信息传输、频繁的信息交换以及高安全性。CAN总线正好满足这些特殊要求,它支持多主机通信模式,允许灵活的数据交换,并且具有固定的报文格式,这在满足军用车辆实时和高效的数据处理中具有优势。 对比了CAN总线与传统的军用通信标准1553B后,文中强调了CAN总线在可靠性方面的明显优势,尤其是在复杂环境和高负载情况下,其容错能力和故障自愈能力使其在军用车辆中的应用更具吸引力。此外,CAN总线的成本效益也是其在军用领域得到广泛应用的一个重要因素。 文章详细介绍了CAN总线的工作原理和特点,比如它的仲裁机制能够有效管理多个节点间的通信,避免冲突,同时其低数据速率适合于军用车辆的实时通信需求。在介绍完CAN总线的优势后,文章还可能探讨了实际应用中的挑战,如如何确保网络的安全性、如何进行有效的系统集成等问题,以及如何通过研发和优化来克服这些挑战。 本文通过对CAN总线特性的深入剖析,证明了将其应用于军用车辆是切实可行且具有重大意义的,为军用车辆电子系统的现代化和成本效益最大化提供了新的思路和技术路径。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依