UNIQUE KEY `uniq_program_id_broadcast_id` (`f_broadcast_id`,`f_program_id`) USING BTREE,
时间: 2023-08-05 18:03:05 浏览: 84
这是一个MySQL数据库表的索引定义。索引是用于加快数据库查询速度的数据结构。在这个例子中,`uniq_program_id_broadcast_id` 是索引的名称,`f_broadcast_id` 和 `f_program_id` 是索引的两个列。`USING BTREE` 指定了索引使用的数据结构类型为B树。该索引的目的是确保 `(f_broadcast_id, f_program_id)` 这个组合在表中是唯一的,以避免重复数据的插入。
相关问题
select count(date2) / count(date1) as avg_ret from ( select distinct qpd.device_id, qpd.date as date1, uniq_id_date.date as date2 from question_practice_detail as qpd left join( select distinct device_id, date from question_practice_detail ) as uniq_id_date on qpd.device_id=uniq_id_date.device_id and date_add(qpd.date, interval 1 day)=uniq_id_date.date ) as id_last_next_date
对不起,我之前对您的查询解释有误。这个查询实际上是计算每个设备的连续日期之间的平均间隔。
在这个查询中,首先从 `question_practice_detail` 表中选择了独立的设备ID和日期,并将其命名为 `qpd` 子查询。然后,使用左连接将 `qpd` 子查询与另一个子查询 `uniq_id_date` 进行连接。`uniq_id_date` 子查询选择了独立的设备ID和日期,并且设备ID相同且日期相差1天的记录被连接起来。
接下来,在外部查询中,通过计算 `date2` 的数量除以 `date1` 的数量,得到了每个设备连续日期之间的平均间隔,并将其命名为 `avg_ret`。
请注意,这是根据您提供的修改后的查询进行的解释。如果有任何遗漏或误解,请随时纠正。
详细解释一下这段代码,每一句给出详细注解:for k in kpts.keys(): kpts[k] = np.round(np.concatenate(kpts[k], axis=0)) unique_kpts = {} unique_match_idxs = {} for k in kpts.keys(): uniq_kps, uniq_reverse_idxs = torch.unique(torch.from_numpy(kpts[k].astype(np.float32)), dim=0, return_inverse=True) unique_match_idxs[k] = uniq_reverse_idxs unique_kpts[k] = uniq_kps.numpy() with h5py.File(f"{feature_dir}/keypoints.h5", mode='w') as f_kp: for k, kpts1 in unique_kpts.items(): f_kp[k] = kpts1 out_match = defaultdict(dict) for k1, group in match_indexes.items(): for k2, m in group.items(): m2 = deepcopy(m) m2[:,0] = unique_match_idxs[k1][m2[:,0]] m2[:,1] = unique_match_idxs[k2][m2[:,1]] mkpts = np.concatenate([unique_kpts[k1][m2[:,0]], unique_kpts[k2][m2[:,1]]], axis=1) unique_idxs_current = get_unique_idxs(torch.from_numpy(mkpts), dim=0) m2_semiclean = m2[unique_idxs_current] unique_idxs_current1 = get_unique_idxs(m2_semiclean[:, 0], dim=0) m2_semiclean = m2_semiclean[unique_idxs_current1] unique_idxs_current2 = get_unique_idxs(m2_semiclean[:, 1], dim=0) m2_semiclean2 = m2_semiclean[unique_idxs_current2] out_match[k1][k2] = m2_semiclean2.numpy() with h5py.File(f"{feature_dir}/matches.h5", mode='w') as f_match: for k1, gr in out_match.items(): group = f_match.require_group(k1) for k2, match in gr.items(): group[k2] = match
这段代码实现了对关键点的处理和匹配,最终保存在文件中。具体的注释如下:
```python
# 对每个图像的关键点进行合并,并且四舍五入
for k in kpts.keys():
kpts[k] = np.round(np.concatenate(kpts[k], axis=0))
# 初始化两个字典
unique_kpts = {}
unique_match_idxs = {}
# 对于每个图像的关键点进行去重,得到unique_kpts和unique_match_idxs
for k in kpts.keys():
uniq_kps, uniq_reverse_idxs = torch.unique(torch.from_numpy(kpts[k].astype(np.float32)), dim=0, return_inverse=True)
unique_match_idxs[k] = uniq_reverse_idxs
unique_kpts[k] = uniq_kps.numpy()
# 将处理后的关键点和匹配结果写入到文件中
with h5py.File(f"{feature_dir}/keypoints.h5", mode='w') as f_kp:
for k, kpts1 in unique_kpts.items():
f_kp[k] = kpts1
out_match = defaultdict(dict)
for k1, group in match_indexes.items():
for k2, m in group.items():
# 处理匹配结果
m2 = deepcopy(m)
m2[:,0] = unique_match_idxs[k1][m2[:,0]]
m2[:,1] = unique_match_idxs[k2][m2[:,1]]
mkpts = np.concatenate([unique_kpts[k1][m2[:,0]], unique_kpts[k2][m2[:,1]]], axis=1)
unique_idxs_current = get_unique_idxs(torch.from_numpy(mkpts), dim=0)
m2_semiclean = m2[unique_idxs_current]
unique_idxs_current1 = get_unique_idxs(m2_semiclean[:, 0], dim=0)
m2_semiclean = m2_semiclean[unique_idxs_current1]
unique_idxs_current2 = get_unique_idxs(m2_semiclean[:, 1], dim=0)
m2_semiclean2 = m2_semiclean[unique_idxs_current2]
out_match[k1][k2] = m2_semiclean2.numpy()
# 将处理后的匹配结果写入到文件中
with h5py.File(f"{feature_dir}/matches.h5", mode='w') as f_match:
for k1, gr in out_match.items():
group = f_match.require_group(k1)
for k2, match in gr.items():
group[k2] = match
```
阅读全文