cross_val_score怎样使用
时间: 2024-05-15 22:15:36 浏览: 19
multiscorer:一个模块,允许在scikit的cross_val_score中使用多个度量函数
cross_val_score是Scikit-learn库中的一个函数,它可以用来对给定的机器学习模型进行交叉验证。它接受四个参数:
1. estimator: 要进行交叉验证的模型,是一个实现了fit和predict方法的机器学习模型对象。
2. X: 特征矩阵,一个n_samples行n_features列的数组。
3. y: 标签向量,一个n_samples行1列的数组。
4. cv: 交叉验证的折数,可以是一个整数或者是一个交叉验证迭代器。
返回值是一个浮点型数组,表示每次交叉验证的评分。
下面是一个示例代码,使用cross_val_score对线性回归模型进行交叉验证:
```python
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LinearRegression
# 准备数据
X = [[0, 0], [1, 1], [2, 2], [3, 3]]
y = [0, 1, 2, 3]
# 创建模型
model = LinearRegression()
# 调用cross_val_score
scores = cross_val_score(model, X, y, cv=5)
# 输出结果
print(scores)
```
在这个例子中,我们使用了5折交叉验证,所以会进行5次评估,并输出5个评分。
阅读全文