基于stm32F407 串口2采用DMA方式接收数据
时间: 2023-02-09 22:16:05 浏览: 515
在 STM32F407 中使用 DMA 进行串口数据接收的步骤如下:
1. 在 STM32CubeMX 中配置 DMA 和串口:打开 STM32CubeMX,选择你使用的 STM32F407 开发板,在 "Configuration" 页面中配置 DMA 和串口,包括 DMA 通道、串口及其相关的引脚。
2. 配置 DMA 和串口的中断:在 STM32CubeMX 中启用 DMA 和串口的中断,并在代码生成后在对应的中断服务函数中添加你需要的代码。
3. 在代码中配置 DMA 和串口:在你的代码中调用对应的 HAL 库函数来配置 DMA 和串口。
4. 启动 DMA 接收:在代码中调用 HAL_UART_Receive_DMA() 函数来启动 DMA 接收。
5. 处理接收到的数据:在 DMA 中断服务函数中处理接收到的数据。
注意:上述步骤只是大致流程,具体实现还需要根据你的具体需求和代码编写情况进行调整。
相关问题
基于stm32F407 串口2 采用DMA方式接收数据,请给我具体代码
### 回答1:
在 stm32F407 微控制器上,使用 DMA 方式接收串口 2 的数据,可以使用以下代码:
```C
#include "stm32f4xx.h"
#include "stm32f4xx_rcc.h"
#include "stm32f4xx_gpio.h"
#include "stm32f4xx_usart.h"
#include "stm32f4xx_dma.h"
#define USART2_DR_ADDRESS ((uint32_t)0x40004404)
// 接收缓冲区
uint8_t rx_buffer[64];
void USART2_DMA_Config(void)
{
DMA_InitTypeDef DMA_InitStructure;
// 使能 DMA1 时钟
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA1, ENABLE);
// 复位 DMA1 控制器
DMA_DeInit(DMA1_Stream5);
// 配置 DMA1 Stream5
DMA_InitStructure.DMA_Channel = DMA_Channel_4;
DMA_InitStructure.DMA_PeripheralBaseAddr = USART2_DR_ADDRESS;
DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)rx_buffer;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory;
DMA_InitStructure.DMA_BufferSize = sizeof(rx_buffer);
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable;
DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_Full;
DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single;
DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
DMA_Init(DMA1_Stream5, &DMA_InitStructure);
// 使能 DMA1 Stream5
DMA_Cmd(DMA1_Stream5, ENABLE);
### 回答2:
以下是基于STM32F407串口2采用DMA方式接收数据的具体代码:
首先,在使用DMA方式接收串口2数据之前,需要初始化串口2和DMA相关的寄存器和配置。
```c
// 初始化串口2
void USART2_Init(void)
{
// 使能串口时钟
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
USART_InitTypeDef USART_InitStructure;
USART_InitStructure.USART_BaudRate = 115200;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx;
USART_Init(USART2, &USART_InitStructure);
// 使能串口接收
USART_Cmd(USART2, ENABLE);
}
// 初始化DMA
void DMA_USART2_Rx_Init(void)
{
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA1, ENABLE);
DMA_InitTypeDef DMA_InitStructure;
DMA_InitStructure.DMA_Channel = DMA_Channel_4;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory;
DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)rx_buffer; // 接收数据缓冲区
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&USART2->DR;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_BufferSize = BUFFER_SIZE; // 缓冲区大小
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_Init(DMA1_Stream5, &DMA_InitStructure);
// 使能传输完成中断
DMA_ITConfig(DMA1_Stream5, DMA_IT_TC, ENABLE);
// 使能DMA传输
DMA_Cmd(DMA1_Stream5, ENABLE);
// 使能串口接收DMA模式
USART_DMACmd(USART2, USART_DMAReq_Rx, ENABLE);
}
```
在main函数中调用上述初始化函数,并实现传输完成中断处理函数。
```c
#define BUFFER_SIZE 256
uint8_t rx_buffer[BUFFER_SIZE];
int main(void)
{
// 初始化系统时钟和相关外设
USART2_Init();
DMA_USART2_Rx_Init();
while (1)
{
// 主程序内容
}
}
// DMA传输完成中断处理函数
void DMA1_Stream5_IRQHandler(void)
{
if (DMA_GetITStatus(DMA1_Stream5, DMA_IT_TCIF5))
{
// 处理接收到的数据
// ...
// 清除DMA传输完成中断标志
DMA_ClearITPendingBit(DMA1_Stream5, DMA_IT_TCIF5);
}
}
```
以上是基于STM32F407串口2采用DMA方式接收数据的具体代码,代码中的rx_buffer为接收数据的缓冲区,BUFFER_SIZE为缓冲区大小,可根据实际需要进行设置。在DMA传输完成中断处理函数中,可以对接收到的数据进行处理。
### 回答3:
下面是使用STM32F407的串口2以DMA方式接收数据的具体代码:
```c
#include "stm32f4xx.h"
void DMA_USART2_Configuration(uint8_t *buffer, uint16_t bufferSize)
{
// 使能DMA2的时钟
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2, ENABLE);
DMA_InitTypeDef DMA_InitStructure;
// 复位DMA2中的所有寄存器
DMA_DeInit(DMA2_Stream5);
// 配置DMA通道1,数据传输方向为从外设到存储器
DMA_InitStructure.DMA_Channel = DMA_Channel_4;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory;
DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)buffer;
DMA_InitStructure.DMA_BufferSize = bufferSize;
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&USART2->DR;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_VeryHigh;
DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable;
DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull;
DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single;
DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
DMA_Init(DMA2_Stream5, &DMA_InitStructure);
// 使能DMA2传输完成中断
DMA_ITConfig(DMA2_Stream5, DMA_IT_TC, ENABLE);
// 使能串口2的DMA接收
USART_DMACmd(USART2, USART_DMAReq_Rx, ENABLE);
// 使能DMA2传输
DMA_Cmd(DMA2_Stream5, ENABLE);
}
int main(void)
{
// 使能串口2和GPIOA的时钟
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
// 配置USART2引脚
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2 | GPIO_Pin_3;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
// 配置USART2的工作模式、波特率等参数
USART_InitTypeDef USART_InitStructure;
USART_InitStructure.USART_BaudRate = 115200;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(USART2, &USART_InitStructure);
// 配置USART2的中断向量表
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = DMA2_Stream5_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
// 配置USART2的接收DMA
uint8_t receiveBuffer[128];
DMA_USART2_Configuration(receiveBuffer, sizeof(receiveBuffer));
while (1)
{
// 这里继续处理接收到的数据
}
}
// DMA传输完成中断处理函数
void DMA2_Stream5_IRQHandler(void)
{
if (DMA_GetITStatus(DMA2_Stream5, DMA_IT_TCIF5) != RESET)
{
// 清除中断标志位
DMA_ClearITPendingBit(DMA2_Stream5, DMA_IT_TCIF5);
// 处理完接收的数据后,可以进行其他操作
}
}
```
以上是使用STM32F407的串口2以DMA方式接收数据的代码,其中使用了DMA2的通道5来配置串口2的DMA接收功能,并进行相关的初始化。代码中还提供了一个DMA传输完成中断处理函数,用于处理接收到的数据并进行其他操作。请根据自己的需求对代码进行适当的修改和调整。
STM32F407 串口usart2 dma 乒乓缓冲实例
下面是一个基于STM32F407芯片的USART2串口DMA乒乓缓冲实例。
首先,需要在CubeMX中配置USART2和DMA。USART2的波特率、数据位、停止位等参数可以根据实际需求进行配置。DMA的通道、模式、传输方向、数据大小等参数也需要配置。在配置DMA时,需要注意设置DMA的循环模式,以实现乒乓缓冲。
接下来,可以使用以下代码实现USART2的DMA乒乓缓冲:
```c
#include "stm32f4xx_hal.h"
#define BUFFER_SIZE 128 // 缓冲区大小
uint8_t usart2_rx_buffer[2][BUFFER_SIZE]; // 乒乓缓冲区
uint8_t current_buffer_index = 0; // 当前使用的缓冲区索引
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
if(huart == &huart2) // 判断是USART2接收中断
{
HAL_UART_Receive_DMA(&huart2, usart2_rx_buffer[current_buffer_index], BUFFER_SIZE); // 启动下一次DMA传输
current_buffer_index = (current_buffer_index + 1) % 2; // 切换缓冲区
}
}
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_DMA_Init();
MX_USART2_UART_Init();
HAL_UART_Receive_DMA(&huart2, usart2_rx_buffer[current_buffer_index], BUFFER_SIZE); // 启动第一次DMA传输
while(1)
{
// 处理接收到的数据
if(current_buffer_index == 0)
{
// 处理 usart2_rx_buffer[1] 中的数据
}
else
{
// 处理 usart2_rx_buffer[0] 中的数据
}
}
}
```
在上面的代码中,当USART2接收到数据时,会触发HAL_UART_RxCpltCallback()回调函数。在该回调函数中,会启动下一次DMA传输,并切换缓冲区。在主程序中,可以根据current_buffer_index的值来判断当前使用的缓冲区,以处理接收到的数据。
需要注意的是,在处理接收到的数据时,应该尽可能快地将数据从缓冲区中取出,以避免缓冲区溢出。如果处理速度较慢,可以考虑增大缓冲区的大小。
阅读全文