交叉验证knn算法得到最优的参数和准确率不使用sklearn库
时间: 2023-12-03 07:04:45 浏览: 76
交叉验证可以帮助我们在选择超参数时避免过拟合和欠拟合。关于如何实现KNN算法,我这里提供一个简单的实现参考,您可以根据自己的需要进行修改:
```
import numpy as np
class KNN:
def __init__(self, k):
self.k = k
def fit(self, X, y):
self.X_train = X
self.y_train = y
def predict(self, X):
y_pred = []
for sample in X:
dists = np.sqrt(np.sum((self.X_train - sample) ** 2, axis=1))
idxs = np.argsort(dists)[:self.k]
k_nearest_labels = list(self.y_train[idxs])
y_pred.append(max(set(k_nearest_labels), key=k_nearest_labels.count))
return np.array(y_pred)
def accuracy(self, y_true, y_pred):
return np.sum(y_true == y_pred) / len(y_true)
def cross_validation(X, y, k_fold=5):
# Split the data into k-fold
fold_size = len(X) // k_fold
X_folds = []
y_folds = []
for i in range(k_fold):
X_folds.append(X[i*fold_size:(i+1)*fold_size])
y_folds.append(y[i*fold_size:(i+1)*fold_size])
# Train and evaluate the model k times
knn = KNN(k=3) # Change k if necessary
accuracies = []
for i in range(k_fold):
X_train = np.vstack(X_folds[:i] + X_folds[i+1:])
y_train = np.hstack(y_folds[:i] + y_folds[i+1:])
X_test = X_folds[i]
y_test = y_folds[i]
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
accuracies.append(knn.accuracy(y_test, y_pred))
return np.mean(accuracies), knn.k
```
上述代码中,我们定义了一个KNN类,用于训练和预测。其中,fit方法接受训练数据和标签,predict方法接受测试数据并返回预测标签,accuracy方法接受真实标签和预测标签并返回准确率。然后,我们定义了cross_validation函数来执行交叉验证。该函数将数据和标签拆分成k个折叠,并在每个折叠上训练和评估模型。最后,该函数返回准确率的平均值和最优的k值。
您可以调用cross_validation函数,以便使用上述代码实现交叉验证knn算法得到最优的参数和准确率。
阅读全文