翻译代码def load_stopwords(file_path): stop_words = [] with open(file_path, encoding='UTF-8') as words: stop_words.extend([i.strip() for i in words.readlines()]) return stop_words def review_to_text(review): stop_words = load_stopwords(stopword_path) # 去除英文 review = re.sub("[^\u4e00-\u9fa5^a-z^A-Z]", '', review) review = jieba.cut(review) # 去掉停用词 if stop_words: all_stop_words = set(stop_words) words = [w for w in review if w not in all_stop_words] #print(words) return words
时间: 2024-02-26 19:52:05 浏览: 166
这段代码包含了两个函数:
1. load_stopwords(file_path):用于加载中文停用词表。具体实现步骤如下:
a. 通过传入文件路径,利用with open的方式读取文件内容。
b. 将每行的停用词添加到stop_words列表中。
c. 返回stop_words列表。
2. review_to_text(review):用于将评论文本转换为文本列表。具体实现步骤如下:
a. 调用load_stopwords函数,加载中文停用词表。
b. 使用正则表达式去除文本中的英文字符。
c. 使用jieba库进行中文分词。
d. 去除文本中的停用词。
e. 将处理后的文本列表作为函数返回值。
需要注意的是,这段代码使用了正则表达式去除了文本中的英文字符,只保留了中文字符。同时,在进行中文分词时,使用了jieba库。此外,对于停用词的处理,代码使用了Python中的列表推导式,将不在停用词表中的词语添加到words列表中。
相关问题
import sys import re import jieba import codecs import gensim import numpy as np import pandas as pd def segment(doc: str): stop_words = pd.read_csv('data/stopwords.txt', index_col=False, quoting=3, names=['stopword'], sep='\n', encoding='utf-8') stop_words = list(stop_words.stopword) reg_html = re.compile(r'<[^>]+>', re.S) # 去掉html标签数字等 doc = reg_html.sub('', doc) doc = re.sub('[0-9]', '', doc) doc = re.sub('\s', '', doc) word_list = list(jieba.cut(doc)) out_str = '' for word in word_list: if word not in stop_words: out_str += word out_str += ' ' segments = out_str.split(sep=' ') return segments def doc2vec(file_name, model): start_alpha = 0.01 infer_epoch = 1000 doc = segment(codecs.open(file_name, 'r', 'utf-8').read()) doc_vec_all = model.infer_vector(doc, alpha=start_alpha, steps=infer_epoch) return doc_vec_all # 计算两个向量余弦值 def similarity(a_vect, b_vect): dot_val = 0.0 a_norm = 0.0 b_norm = 0.0 cos = None for a, b in zip(a_vect, b_vect): dot_val += a * b a_norm += a ** 2 b_norm += b ** 2 if a_norm == 0.0 or b_norm == 0.0: cos = -1 else: cos = dot_val / ((a_norm * b_norm) ** 0.5) return cos def test_model(file1, file2): print('导入模型') model_path = 'tmp/zhwk_news.doc2vec' model = gensim.models.Doc2Vec.load(model_path) vect1 = doc2vec(file1, model) # 转成句子向量 vect2 = doc2vec(file2, model) print(sys.getsizeof(vect1)) # 查看变量占用空间大小 print(sys.getsizeof(vect2)) cos = similarity(vect1, vect2) print('相似度:%0.2f%%' % (cos * 100)) if __name__ == '__main__': file1 = 'data/corpus_test/t1.txt' file2 = 'data/corpus_test/t2.txt' test_model(file1, file2)
这是一段 Python 代码,主要是使用 gensim 库实现了基于 Doc2Vec 模型的文本相似度计算。其中,首先使用 jieba 库对文本进行分词,并去除停用词,然后使用 gensim.models.Doc2Vec 中的 infer_vector 方法将文本转化为向量表示,最后使用余弦相似度计算两个向量之间的相似度。该代码中使用了两个测试文件 t1.txt 和 t2.txt,分别进行文本相似度计算,并输出相似度的结果。
def initialize(self): with open(self.stopword_path, encoding='UTF-8') as words: self.stop_words = [i.strip() for i in words.readlines()] with open(self.model_path, 'rb') as file: model = pickle.load(file) self.clf = model['clf'] self.vectorizer = model['vectorizer'] self.tfidftransformer = model['tfidftransformer'] if self.userdict_path: self.tokenizer.load_userdict(self.userdict_path)
在 initialize() 函数中,首先会读取停用词文本文件,并将其保存到 self.stop_words 变量中。接着,会使用 pickle 加载训练好的情感分类模型,其中包括分类器、特征提取器和 TF-IDF 转换器。加载完成后,会将它们分别赋值给 self.clf、self.vectorizer 和 self.tfidftransformer 变量。
如果有用户自定义词典(即 userdict_path 不为空),则会使用 jieba 分词器加载用户自定义词典。
这些初始化操作的目的是为了训练好情感分类模型并准备好所有必要的环境,以便后续对文本进行情感分析。
阅读全文