Unet应用完整代码举例
时间: 2023-11-08 13:05:55 浏览: 112
以下是一个使用PyTorch实现的Unet网络的完整代码示例:
```python
import torch
import torch.nn as nn
# 定义Unet网络模型
class Unet(nn.Module):
def __init__(self, in_channels, out_channels):
super(Unet, self).__init__()
# 定义编码器部分
self.down1 = self.contracting_block(in_channels, 64)
self.down2 = self.contracting_block(64, 128)
self.down3 = self.contracting_block(128, 256)
self.down4 = self.contracting_block(256, 512)
# 定义解码器部分
self.up1 = self.expanding_block(512, 256)
self.up2 = self.expanding_block(256, 128)
self.up3 = self.expanding_block(128, 64)
# 定义最后的卷积层
self.out = nn.Sequential(
nn.Conv2d(64, out_channels, kernel_size=1),
nn.Sigmoid()
)
def contracting_block(self, in_channels, out_channels):
block = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
return block
def expanding_block(self, in_channels, out_channels):
block = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(out_channels, in_channels // 2, kernel_size=2, stride=2)
)
return block
def forward(self, x):
# 编码器部分
x1 = self.down1(x)
x2 = self.down2(x1)
x3 = self.down3(x2)
x4 = self.down4(x3)
# 解码器部分
x = self.up1(x4)
x = self.up2(torch.cat([x, x3], dim=1))
x = self.up3(torch.cat([x, x2], dim=1))
# 输出层
x = self.out(torch.cat([x, x1], dim=1))
return x
# 创建Unet模型实例
unet = Unet(in_channels=3, out_channels=1)
# 输入数据
inputs = torch.randn(1, 3, 256, 256)
# 前向传播
outputs = unet(inputs)
print(outputs.shape)
```
这个代码示例定义了一个Unet网络的模型,包括编码器部分、解码器部分和最后的卷积层。你可以根据自己的需求调整输入通道数和输出通道数。在前向传播过程中,我们输入了一个大小为1x3x256x256的张量,得到了一个大小为1x1x256x256的输出。
阅读全文