packet tracer 静态路由故障排除

时间: 2023-04-30 12:00:46 浏览: 404
静态路由故障排除的步骤如下: 1.检查路由器配置:检查路由器的静态路由配置是否正确,包括目的网络、下一跳地址等信息。 2.检查网络拓扑:检查网络拓扑是否正确,包括各个设备的连接方式、IP地址等信息。 3.检查路由器接口状态:检查路由器接口状态是否正常,包括接口是否启用、是否有IP地址等信息。 4.检查路由器之间的连通性:使用ping命令检查路由器之间的连通性,如果无法ping通,则需要检查路由器之间的物理连接是否正常。 5.检查路由器日志:检查路由器日志,查看是否有相关的错误信息。 6.尝试清除路由缓存:在路由器上执行clear ip route命令,清除路由缓存,然后重新配置静态路由。 7.尝试重启路由器:如果以上步骤都无法解决问题,可以尝试重启路由器,重新加载配置文件。 以上是静态路由故障排除的一些常见步骤,具体情况需要根据实际情况进行调试。
相关问题

packet tracer静态路由故障排除

静态路由故障排除是指在使用Packet Tracer进行网络模拟时,当静态路由无法正常工作时,需要进行的一系列排查和修复步骤。以下是一些可能的排查步骤和解决方案: 1. 验证PC是否能ping通其他PC和R1。如果不能,请继续排除故障,直到ping成功为止。 2. 确认静态路由是否正确配置。检查路由表和路由器配置,确保静态路由的目的地和下一跳地址正确。 3. 确认网络拓扑是否正确。检查网络拓扑图,确保所有设备都正确连接并配置。 4. 确认IP地址是否正确。检查每个设备的IP地址和子网掩码,确保它们都正确配置。 5. 确认物理连接是否正常。检查每个设备的物理连接,确保它们都正确连接并工作正常。 6. 确认路由器接口是否启用。检查路由器接口状态,确保它们都已启用。 如果以上步骤都没有解决问题,可以尝试重新启动路由器或重置路由器配置。如果问题仍然存在,可能需要更深入的排查和故障排除。

packet tracer 静态路由

Packet Tracer是一款网络模拟软件,可以用来模拟静态路由。静态路由是手动配置的路由,不会自动更新,需要管理员手动修改。在Packet Tracer中,可以通过添加静态路由来实现网络通信。管理员需要手动配置每个路由器的路由表,以确保数据包能够正确地传输到目的地。静态路由的优点是简单易用,适用于小型网络,但对于大型网络来说,静态路由的管理和维护会变得非常困难。

相关推荐

text/plain
一 静态路由故障   1. 静态路由和有类别查找   当路由选择表进程检查一条使用中间地址(路由选择表中作为下一跳引用的IP地址)的可解析的静态路由时,这个检查总是在有类别方式下完成的,无论是否使用ip classless命令如果在路由选择表中有类别方式下的中间地址不能解析,则删除该静态路由。   使用show ip route查看路由选择表。   使用debug 可以显示某个网络宕掉了。   如果使用无类别方式并有一条默认路由存在,那么具有高管理距离的备份表态路由将永远不会在主静态路由失效时装入到路由选择表中。这是因为任何静态路由,即便是指向不存在的中间地址的静态路由,都会使用默认路由进行解析。   CISCO路由选择表进程每60S调用一个检查路由选择表的静态路由功能来根据动态变化的路由选择表安装或删除静态路由。   2.静态路由和中间地址   静态路由可以使用中间网络地址或出接口来创建。大多数情况下,使用出接口在路由选择表进程中解析静态路由更加有效。   只要中间IP地址可以在路由选择表中解析,它不必是真实的下一跳路由器的接口。静态网络路由(如中间地址)必须最终被解析为路由选择表中一条具有出接口的路由。   每当路由选择表进程需要为x.x.x.0/24网络使用静态路由表项时,它还需要解析中间地址y.y.y.y,称为递归查找。一次额外的路由查找或许对路由选择进程的性能没有多少影响。但是,采取多次递归查找来获得解析的静态路由可能会影响性能。   3.静态路由优化   为避免递归查找: 串行网络:使用出接口   以太网络:同时使用中间地址和出接口   4.反复的静态路由安装和删除   尽可能地使用出接口而不是中间地址来配置静态路由。   5.使用丢弃路由   有时网络中有环路的产生。通过周期性的查看路由器接口上的计数器可以看到路由选择环路的结果。   clear counters serial0/0   show interface serial0/0   路由环路的问题在网络中产生了一个黑洞。一旦IP头中的生存期(TTL)减到0就丢弃分组。   解决1:有类别模式的路由选择(no ip classless)——在用户网络路由器上使用no ip classless.路由器在至少一个已知子网存在时不会使用任何超网或默认路由。但不是首选。因为它改变了所有分组的路由选择表查找行为。   解决2:使用一条丢弃路由——当路由选择表中没有特定的匹配,而且使用一条超网或默认路由来转发那些分组并不合适时,一条丢弃路由把分组送给了null0,即比特桶。   ip route x.x.0.0 255.255.0.0 null0   ip route x.x.0.0 255.255.0.0 null0 200   后一个命令行配置仅在主路由失效时使用的另一条丢弃路由。通过将静态路由的默认管理距离改为比所使用的动态路由选择协议的管理距离更高的一个值来实现。 二 排除RIP故障   1.不兼容的版本类型   debug ip rip   show ip protocols 对检查接口上发送和接收的RIP分组版本十分有用。   如果R1不支持V2的版本,只能接收RIPv1分组,那么R2配置成RIPv1和RIPv2.   可在接口级指定发送和接收RIP分组的特定版本   interface e0   ip rip send version 1 2   ip rip receive version 1 2   2.不匹配的认证密钥   RIPv2的一个选项是可以认证的RIPv2更新,为了增强安全性,当使用认证时,必须在双方配置口令。这个口令被称为认证密钥。如果这一密钥与另一方的密钥不匹配,双方都将忽略RIPv2更新。   在接口上配置ip rip authentication key-chain cisco   用debug ip rip调试。   3.达到RIP的路数限制   RIP度量标准的最大值是15跳。   无法克服这个问题。可以使用非15跳限制的路由选择协议。IGRP最大跳数是255,EIGRP最大跳数是224,二者默认都是100.   4.不连续网络   当主网络被另一个主网络分隔开时,被称为不连续网络。   解决1:使用静态路由   解决2:在路由器之间的链路地址改为左右不连续网络中的一部分。   解决3:在两台路由器上用no auto-summary配置启用RIPv2的无类别路由选择版本。   router rip   version 2   network x.x.x.0   no auto-summary   解决4:使用无类别路由选择协议。如OSPF,EIGRP,IS-IS替代RIPv1路由选择协议。   5.不合法的源地址   当RIP告诉路由选择表安装路由时,它执行源合法性检查。如果源所在子网与本地接口不同,RIP则忽略更新并且不在路由选择表中安装从这个源来的路由。   当一方是有编号而另一方是无编号时,必须关闭这个检查。   router rip   no validate-update-source   6.翻动(flapping)路由   路由翻动是指路由选择表中一条路由的不断删除和再插入。为了检查路由是否真的翻动,检查路由选择表并查看路由的寿命(age)。如果寿命被不断的重置为00:00:00,这就意味这路由正在翻动。   RIP有180S没有收到一条路由,那么该路由将保持240S,然后被清除。   使用show interface来检查接口统计值。   最常见帧中继环境分组丢失。   使用show ip route rip可以检查RIP多久没有更新。   使用show interface serial 0可查看到接口上有大量的广播分组是否被丢弃。帧中继情况下,可能需要调整帧中继广播队列。在非帧中继的环境中,可能需要增加输入或输出保留队列。   7.大型路由选择表   接口上使用ip summary-address汇总路由。 三 排除EIGRP故障   1.不匹配的K值   EIGRP为了建立它的邻居关系,计算EIGRP度量标准的K常数值必须相同。   K1-带宽 K2-负载 K3-延迟 K4,K5-可靠性   router eigrp 1   network x.x.x.x   metric weights 0 1 1 1 1 0   2.不匹配的AS编号   EIGRP不会与具有不同自治系统编号的路由器形成任何邻居关系。   3.活动粘滞   (1)确定问题   可能的原因有:   。 坏的或拥塞的链路;   。 低的路由器资源,如路由器上的低内存和高CPU处理。   。 长的查询范围   。 过多的冗余   默认活动粘滞定时器只有180S.   使用show ip eigrp topology active 命令帮助故障排除EIGRP活动粘滞错误,仅在问题发生时有用,用户一次只有180S的时间来确定。邻居有一个r跟在后面表示它没有应答查询。   (2)故障排除方法   追踪查询,一跳接一跳,在每一跳找出活动路由的状态。   (3)最终解决方案   尽可能手工汇总路由并有一个分层次的网络设计。EIGRP汇总的网络越多,主收敛发生时需要做的事情越少。   4.重复的路由ID   EIGRP只是为了外部路由而使用路由器ID的概念来防止环路。EIGRP基于路由器上回环接口的最大IP地址来选择路由器ID.如果路由器没有回环接口,则选择所有接口中最大的激活IP地址作为EIGRP的路由器ID.   debug ip eigrp可以看到接口上通告某个网络。   经验法则:永远不要在网络的两个地方配置相同的IP地址。 四 排除OSPF故障   1.不匹配的参数   使用debug ip ospf adj命令能够看到大多数的不匹配问题。   (1)hello/dead间隔不匹配——匹配才可以形成邻居。   (2)不匹配的认证类型——OSPF下有MD5和纯文本认证。   router ospf 1   area 0 authentication message-digest   network x.x.0.0 0.0.255.255 area 0   (3)不匹配的区域ID——区域信息在OSPF的HELLO分组中发送。不同,不会形成邻接。   (4)不匹配的短截/传输/NSSA区域选项——当OSPF与一个邻居交换HELLO分组时,它所交换的一项内容是由8比特表示的可选能力。选项字段之一是E比特,即OSPF短截标志。当E比特置0时,该路由关联的区域是一个短截区域,外部LSA不允许进入这个区域。   2.OSPF状态问题   成为邻居的路由器不保证交换链路状态更新。一旦路由器决定与一个邻居形成邻接,它就开始交换其链路状态数据库的一份完整拷贝。   (1)OSPF陷入ATTEMPT——仅对neighbor语句的NBMA网络有效。陷入ATTEMPT是指一台路由器试图通过发送它的HELLO来联系邻居但是它没有收到响应。   show ip ospf neighbor查看。   原因:错误配置neighbor;NBMA上的单播连通性断了,这可能是由错误的DLCI,访问列表或转换单播的NAT引起的。   (2)OSPF陷入INIT——INIT状态表示路由器收到来自邻居的HELLO分组,但是双向通信并没有建立 .   原因:   。 一方访问列表阻止了HELLO;   。 一方的多播能力失效(一个交换机故障);   。 仅在一方启用了认证;   。 一方的frame-relay map/dialer map语句缺少了broadcast关键字。   。 一方的HELLO在第2层丢失了。   (3)OSPF陷入2-WAY——双向状态是指路由器在HELLO分组的邻居字段中见到了自己的路由器ID.类似于所有路由器的优先级都为0,则不会发生选举,所有路由器停留在双向状态中。   解决:确保至少一台路由器具有一个至少为1的IP OSPF优先级。   (4)OSPF陷入EXSTART/EXCHANGE——在EXSTART或EXCHANGE状态的OSPF邻居正处于尝试交换DBD(数据库描述)分组的过程中。   原因:   。 不匹配的接口MTU   。 邻居上重复的路由器ID   。 无法用超过特定MTU 长度进行PING   。 断掉的单播连通性,它可能是因为错误的DLCI,访问列表或转换单播的NAT   (5)OSPF陷入LOADING——邻居没有应答或邻居的应答从未到达本地路由器,路由器也会陷入LOADING状态。常有"%OSPF-4-BADLSA"控制台信息。   原因:   。 不匹配的MTU   。 错误的链路状态请求分组   3.点到点链路的一方是无编号的   interface s0   ip unnumbered loopback0   解决:双方都需要成为一个有编号点到点链路或一个无编号点到点链路。   4.ABR没有产生一个类型4的汇总LSA   类型4的汇总LSA的一个功能是宣告到其他区域的ASBR的可达性。如果同一个区域中存在ASBR则不需要类型4的LSA.   show ip ospf database external 命令的输出显示在路由器的外部OSPF数据库中是否存在路由。   show ip ospf database asbr-summary 命令的输出显示路由是否有类型4的LSA.   检查R是否真是ABR.如果是,则产生类型3或类型4的汇总LSA.show ip ospf   5.转发地址不能通过区域内或区域间路由获知   当OSPF获得一条外部LSA时,它在将该路由装入路由选择表之前要确定转发地址可通过一条OSPF区域内或区域间路由获知。如果转发地址不能通过区域内或区域间路由获知,OSPF不会将路由装入路由选择表中。   有可能的解决:   。 不在ABR上进行汇总   。 在ASBR上过滤再分布入OSPF中的直接子网   router ospf 1   redistribute rip subnets   6.路由汇总问题   两种类型汇总:   。 可执行在ABR上的区域间路由汇总   。 可执行在ASBR上的外部路由汇总   (1)区域间汇总   router ospf 1   area 3 range x.x.x.0 255.255.255.0   通过show ip ospf可以查看   (2)外部汇总   router ospf 1   summary-address x.0.0.0 255.0.0.0   7.CPUHOG问题   产生在:。 邻居形成过程   。 LSA刷新过程   8.SPF计算和路由翻动   只要拓扑有变化,OSPF就运行SPF算法再次计算最短路径优先树。,可能引起链路的不稳定。   原因:。 区域内的接口翻动   。 区域内的邻居接口翻动   。 重复的路由器ID   使用show ip ospf命令可查看在一个给定区域中SPF算法运行的次数;   使用debug ip ospf monitor来隔离一个翻动的LSA;   使用show log命令显示由接口引起的翻动。   解决:   。 修复正在翻动的链路   。 重新定义区域边界 五 排除IS-IS故障   1.IS-IS邻接问题   通常由链路故障和配置错误引起。   show clns neighbors 显示所有希望与被调查的路由器成为邻接的邻居   debug isis adj-packets 命令来调试   2.部分或所有邻接没有形成   步骤1——检查链路故障。show ip interface brief   步骤2——检查配置错误。show run   步骤3——检查不匹配的1级和2级接口。   步骤4——检查区域的错误配置。   步骤5——检查错误配置的子网   步骤6——检查重复的系统ID   3.邻接陷入INIT状态   常见原因:不匹配的接口MTU和认证参数。show clns neighbors可看到   步骤1——检查认证 debug isis adj-packets   步骤2——检查不匹配的MTU debug isis adj-packets   步骤3——检查IS-IS的HELLO填充禁止 (命令同上)   使用show clns interface查看接口上的HELLO填充状态   4.ES-IS邻接形成代替了IS-IS邻接形成   在IP环境中运行IS-IS的CISCO路由器仍然监听ES-IS协议所产生的ISH.当物理层和数据链路层工作时,即使没有建立IS-IS邻接的适当条件,仍能形成ES-IS邻接。   show clns neighbors   5.路由通告问题   大多数路由通告问题都可被限制为源端的配置问题或链路状态分组(LSP)的传播问题。   Dijkstra算法运行在LS数据库上来获得每个被通告路由的最佳路径。   debug isis update-packets   debug isis snp-packets   以上两个调试帮助故障排除LSP洪泛问题和链路状态数据库同步。   路由没有到达网络远端的问题可能有许多潜在原因,包括邻接问题,第1/2层问题,IS-IS错误配置以及其他问题。   6.路由翻动问题   网络中SPF进程的高CPU利用率(SHOW PROCESS CPU命令)也应标记为不稳定。   不稳定链路。   翻动还有可能是由LSP的错误风暴或一个路由选择环路引起。   show isis spf-log命令显示哪个LSP变化最频繁以及哪个LSP角发了SPF计算。   show isis update-packets 六 排除BGP故障   1.故障排除BGP邻居关系问题   遵循:首先,应检查第1/2层,然后是IP连通性(第3层),TCP连接(第4层),最后是BGP配置。   (1)直接的外部BGP邻居没有初始化   自治系统(AS)不会向AS发送或从AS接收任何IP前缀更新,除非邻居关系达到established状态,该状态是BGP邻居建立的最后阶段。当AS有一条单一的EBGP连接时,直到BGP完成了它的收发IP前缀操作后IP连通性   才能发生。   原因:。 第2层宕掉了,阻止了与直接的EBGP邻居通信   。 在BGP配置中有错误的邻居IP地址   命令:show ip bgp summary和 show ip bgp neighbors检查BGP邻居关系   active状态表示邻居间没有发生成功的通信,并且邻居未形成。用PING测试其连通性,失败则表示要修复第1/2层问题。   debug ip bgp能够帮助诊断问题   (2)非直接的外部BGP邻居没有初始化   有些情况下,EBGP邻居不是直连的。BGP邻居关系能够建立在试图形成由一台或多台路由器分隔开的EBGP邻居关系的路由器之间。这种邻居在IOS中被称为EBGP多跳。   当路由器之间存在多个接口并且需要在那些接口之间IP流量负载均衡时,通常在回环接口之间建立EBGP对等实体。   可能的原因:   。 到非直连对等实体地址的路由从路由选择表中丢失了   。 BGP配置中缺少ebgp-multihop命令   。 缺少update-source interface命令   命令:show ip bgp summary 和show bgp neighbors   router bgp 109   neighbor x.x.x.x remote-as 110   neighbor x.x.x.x ebgp-multihop 2   neighbor x.x.x.x update-source loopback0   (3)内部BGP邻居没有初始化   原因:   。 到非直接IBGP邻居的路由丢失了   。 BGP配置中缺少update-source interface命令   (4)BGP邻居(外部和内部)没有初始化   接口访问列表/过滤是BGP邻居活动问题的一个常见原因。   2.故障排除BGP路由通告   发生在BGP路由通告的产生和接收中。   (1)没有产生BGP路由   原因:   。 IP路由选择表中没有匹配的路由   。 发生了配置错误   。 BGP自动汇总到有类别/网络边界   (2)向IBGP/EBGP邻居传播/产生一条BGP路由的问题   配置的分布列表过滤可能是该问题的起因,或者是策略路由选择有问题。   (3)向EBGP邻居但没有向IBGP邻居传播一条BGP路由的问题   show run   show ip bgp   show ip bgp summary   解决:   。 使用IBGP全互联   。 设计一个路由反射器模型。   router bgp 109   neighbor x.x.x.x route-reflector-client   。 设计一个聪明模型   (4)向IBGP/EBGP邻接传播一条IBGP路由的问题   一条BGP路由只有首先通过IGP或静态路由获得后才是同步的。   show ip bgp命令的输出显示了BGP表中的不同步路由。   3.排除路由没有装入IP路由选择表中的故障   原因:   (1)IBGP原因   。 IBGP路由不同步   。 BGP下一跳不可达   (2)EBGP原因   。 在多跳EBGP情况下BGP下一跳不可达   。 BGP路由被抑制   。 多出口鉴别器(MED)值为无穷   4.BGP下一跳不可达   解决:   。 使用静态路由或再分布经由IGP宣告EBGP下一跳   router ospf 1   network x.x.x.0 0.0.0.255 area 0   。 使用next-hop-self命令将下一跳改变为一个内部对等实体地址   router bgp 109   router ospf x.x.x.x next-hop-self   4.BGP路由被抑制   抑制(dampening)是减小本地BGP网络中来自EBGP邻居的不稳定BGP路由所引起的不稳定性的方法。   抑制是一种为一条翻动的BGP路由指派一个罚点的方法。   router bgp 109   bgp dampening 七 排除再分布故障   1.RIP再分布问题   router rip   version 2   redistribute ospf 1 metric 1   network x.x.0.0   因为RIP有跳数限制。为改正到达16跳时会出现路由无法再分布的问题,需要在再分布时指派有效的度量标准。其实现可以使用redistribute命令中的metric或default-metric命令。   使用show ip route查看路由传播情况。   2.IGRP/EIGRP的再分布问题   复合度量标准:宽带,延迟,可靠性,负载   CISCO使用100000000/带宽来得到该代价。   router igrp 1   redistribute ospf 1 metric 1 10000 255 1 1500   network x.x.0.0   或者   router igrp 1   redistribute ospf 1   redistribute static   default-metric 1 10000 255 1 1500   network x.x.0. 0   使用show ip route查看路由传播情况。   3.OSPF的再分布问题   当OSPF再分布时,它成为ASBR.   (1)OSPF没有将外部路由装入路由选择表中   原因:。 不能通过区域内或区域间路由获知转发地址   。 ABR滑产生类型4的汇总LSA   (2)ASBR没有通告被再分布的路由   原因:。 ASBR的配置中缺少subnets关键字   。 distribute-list out命令阻塞了这些路由   router ospf 1   redistribute rip subnets   network x.x.x.0 0.0.0.255 area 0   使用show ip ospf database external IP来查看   4.IS-IS再分布问题   (1)将静态路由再分布入IS-IS   router isis   redistribute static ip   使用show run和show isis database查看   (2)将外部静态路由加入为一个LS的IS-IS LSP   router isis   redistribute static ip metric-type external   5.BGP的再分布问题   在AS边界路由器上,外出路由通告影响进入的流量,而进入路由通告则影响外出流量。因此,外出和进入的通告应分开考虑。   (1)BGP发布进eigrp中   router eigrp 200   redistribute bgp 200 metric 10000 100 255 1 1500 passive-interface s0   network x.x.x.0   router bgp 200   network x.x.x.0   neighbor x.x.x.x remote-as 100   可以使用 show ip route和PING来检测   决对不要在一个面向internet的路由器上使用BGP到IGP的再分布。一个完整的internet路由选择表由 100000个前缀组成,一个IGP进程将会因处理这么多的路由而阻塞再分布一个完整的internet表乃至大部分的表都会不可避免的引起主网络崩溃。   (2)为了更多地控制被通告进入BGP邻居,可以使用静态路由。   向BGP邻居通告一条默认路由不会抑制更具体的路由。   如果只发送默认路由,路由器必须使用过滤器来抑制所有更具体的路由。   router bgp 100   network 0.0.0.0   neighbor x.x.x.x remote-as 300   neighbor x.x.x.x remote-as 200   neighbor x.x.x.x remote-as 100   neighbor x.x.x.x default-originate   neighbor x.x.x.x redistribute-list 1 out (这一句只是BGP路由的一种方法)   access-list 1 permit 0.0.0.0   access-list 1 deny an

最新推荐

recommend-type

子网划分和RIP路由实验,Packet tracer 5.2模拟环境

非常好的组网实验内容,三个实验任务: 1。 用192.168.0.0B类地址,设计子网划分方案 2。 配置静态路由 3。 配置RIP动态路由
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种
recommend-type

tinyplay /storage/BFEF-19EE/wav.wav -D 0 cannot open device 0 for card 0 Unable to open PCM device 0.

这个错误信息可能是由于无法打开PCM设备0导致的。请检查以下几个方面,以便解决这个问题: 1. 你是否有足够的权限来访问该设备? 2. 检查一下PCM设备0是否已经被其他程序占用了。 3. 确认一下你的PCM设备是否已经被正确地配置和设置。 4. 检查一下你的系统是否有足够的内存和资源来支持你的PCM设备。 如果以上几个方面都检查过了,仍然无法解决问题,你可以尝试使用其他的设备号或者采用其他的操作系统来测试这个问题。
recommend-type

建筑供配电系统相关课件.pptx

建筑供配电系统是建筑中的重要组成部分,负责为建筑内的设备和设施提供电力支持。在建筑供配电系统相关课件中介绍了建筑供配电系统的基本知识,其中提到了电路的基本概念。电路是电流流经的路径,由电源、负载、开关、保护装置和导线等组成。在电路中,涉及到电流、电压、电功率和电阻等基本物理量。电流是单位时间内电路中产生或消耗的电能,而电功率则是电流在单位时间内的功率。另外,电路的工作状态包括开路状态、短路状态和额定工作状态,各种电气设备都有其额定值,在满足这些额定条件下,电路处于正常工作状态。而交流电则是实际电力网中使用的电力形式,按照正弦规律变化,即使在需要直流电的行业也多是通过交流电整流获得。 建筑供配电系统的设计和运行是建筑工程中一个至关重要的环节,其正确性和稳定性直接关系到建筑物内部设备的正常运行和电力安全。通过了解建筑供配电系统的基本知识,可以更好地理解和应用这些原理,从而提高建筑电力系统的效率和可靠性。在课件中介绍了电工基本知识,包括电路的基本概念、电路的基本物理量和电路的工作状态。这些知识不仅对电气工程师和建筑设计师有用,也对一般人了解电力系统和用电有所帮助。 值得一提的是,建筑供配电系统在建筑工程中的重要性不仅仅是提供电力支持,更是为了确保建筑物的安全性。在建筑供配电系统设计中必须考虑到保护装置的设置,以确保电路在发生故障时及时切断电源,避免潜在危险。此外,在电气设备的选型和布置时也需要根据建筑的特点和需求进行合理规划,以提高电力系统的稳定性和安全性。 在实际应用中,建筑供配电系统的设计和建设需要考虑多个方面的因素,如建筑物的类型、规模、用途、电力需求、安全标准等。通过合理的设计和施工,可以确保建筑供配电系统的正常运行和安全性。同时,在建筑供配电系统的维护和管理方面也需要重视,定期检查和维护电气设备,及时发现和解决问题,以确保建筑物内部设备的正常使用。 总的来说,建筑供配电系统是建筑工程中不可或缺的一部分,其重要性不言而喻。通过学习建筑供配电系统的相关知识,可以更好地理解和应用这些原理,提高建筑电力系统的效率和可靠性,确保建筑物内部设备的正常运行和电力安全。建筑供配电系统的设计、建设、维护和管理都需要严谨细致,只有这样才能确保建筑物的电力系统稳定、安全、高效地运行。