点云主曲率及高斯曲率Python代码
时间: 2023-11-21 12:04:12 浏览: 411
以下是计算点云主曲率和高斯曲率的Python代码:
```python
import numpy as np
from sklearn.neighbors import KDTree
def compute_curvature(points):
"""
计算点云主曲率和高斯曲率
:param points: Nx3的点云数组
:return: 主曲率和高斯曲率
"""
k = 10 # 设置K值
tree = KDTree(points)
N = points.shape[0]
curvatures = np.zeros((N, 2))
for i in range(N):
indices = tree.query(points[i], k=k, return_distance=False)[0]
neighbors = points[indices, :]
# 计算协方差矩阵
centroid = np.mean(neighbors, axis=0)
deviation = neighbors - centroid
covariance = np.matmul(deviation.T, deviation) / k
# 计算特征值和特征向量
w, v = np.linalg.eig(covariance)
# 计算主曲率和高斯曲率
curvatures[i, 0] = np.max(w)
curvatures[i, 1] = np.prod(w)
return curvatures
```
使用时,只需要将点云数据作为参数传入即可:
```python
points = np.loadtxt('point_cloud.xyz')
curvatures = compute_curvature(points)
```
其中,`points` 是一个 Nx3 的点云数组,`curvatures` 是一个 Nx2 的数组,第一列是主曲率,第二列是高斯曲率。
阅读全文